NANOAKIŞKAN KULLANILAN U-DÖNÜŞLÜ ÇİFT BORULU ISI DEĞİŞTİRİCİSİ AKIŞININ SAYISAL ANALİZİ

Hüseyin KAYA, Recep EKİCİLER

Öz


NANOAKIŞKAN KULLANILAN U-DÖNÜŞLÜ ÇİFT BORULU ISI DEĞİŞTİRİCİSİ AKIŞININ SAYISAL ANALİZİ

Özet

Bu çalışmada, farklı hacimsel konsantrasyondaki su bazlı Al2O3, CuO, SiO2, ZnO nanoakışkanları, U-dönüş dirsekli çift borulu ısı değiştiricinin bir iç borusundaki akışın taşınım ısı transferi ve sürtünme faktörü performansı sayısal olarak incelenmiştir. Türbülanslı akış şartlarında gerçekleştirilen hesaplamalarda nanoakışkanların hacimsel konsantrasyonları %1.0, %2.0, %3.0 ve %4.0 olarak belirlenmiş ve sonuçlar bu değerler için elde edilmiştir. Reynolds sayı aralığı 15000 – 30000 kullanılarak hesaplamalı akışkanlar dinamiği (HAD) yöntemi ile hesaplamalar yapılmış olup en yüksek Nusselt sayısı, %4.0 hacimsel konsantrasyonuna sahip Al2O3/su nanoakışkanı için %51.9 artış oranı ile elde edilmiştir. Nanoakışkan hacimsel konsantrasyonunun artması ile Nusselt sayısı artarken Darcy sürtünme katsayısı değerinde nanoakışkan tipi ve hacimsel konsantrasyonuna bağlı olarak bir değişim gözlenmemiştir.

Anahtar Kelimeler: HAD, Nanoakışkan, Zorlanmış taşınım, Isı değiştirici

NUMERICAL ANALYSIS OF FLOW IN A DOUBLE PIPE HEAT EXCHANGER WITH U-RETURN BEND

Abstract

In this study, water-based Al2O3, CuO, SiO2, ZnO nanofluids at different volume concentrations, convection heat transfer and friction factor performance of the flow in an inner pipe of a double-tube heat exchanger with a U-return bend were numerically investigated. Calculations were performed under turbulent flow conditions and the volume concentrations of nanofluids were specified as 1.0%, 2.0%, 3.0% and 4.0%. Calculations were conducted by using CFD method for Reynolds number range 15000 - 30000, and the highest Nusselt number was obtained with 51.9% enhancement for Al2O3/water nanofluid with 4.0% volume concentration. While the Nusselt number increased with the increase in the nanofluid volume concentration, no change was observed in the Darcy friction coefficient depending on the nanofluid type and volume concentration.

Keywords: CFD, Nanofluid, Forced convection, Heat exchanger


Anahtar Kelimeler


HAD, Nanoakışkan, Zorlanmış taşınım, Isı değiştirici

Tam Metin:

PDF

Referanslar


Chun BH, Kang HU, Kim SH. Effect of alumina nanoparticles in the fluid on heat transfer in double-pipe heat exchanger system. Korean J Chem Eng. 2008; 25(5):966–71.

Berger SA, Talbot L, Yao LS. Flow in Curved Pipes. Annu Rev Fluid Mech. 1983; 15(1):461–512.

Zamzamian A, Oskouie SN, Doosthoseini A, Joneidi A, Pazouki M. Experimental investigation of forced convective heat transfer coefficient in nanofluids of Al2O3/EG and CuO/EG in a double pipe and plate heat exchangers under turbulent flow. Exp Therm Fluid Sci. 2011; 35(3):495–502.

Xuan Y, Li Q. Investigation on Convective Heat Transfer and Flow Features of Nanofluids. J Heat Transfer. 2003; 125(1):151.

Yang Y, Zhang ZG, Grulke EA, Anderson WB, Wu G. Heat transfer properties of nanoparticle-in-fluid dispersions (nanofluids) in laminar flow. Int J Heat Mass Transf. 2005; 48(6):1107–16.

Devendiran DK, Amirtham VA. A review on preparation, characterization, properties, and applications of nanofluids. Renew Sustain Energy Rev. 2016; 60:21–40.

Choi SUS, Eastman JA. Enhancing thermal conductivity of fluids with nanoparticles. ASME Int Mech Eng Congr Expo. 1995; 66:99–105.

Corcione M, Cianfrini M, Quintino A. Heat transfer of nanofluids in turbulent pipe flow. Int J Therm Sci. 2012; 56:58–69.

Suresh S, Venkitaraj KP, Selvakumar P. Comparative study on thermal performance of helical screw tape inserts in laminar flow using Al2O3/water and CuO/water nanofluids. Superlattices Microstruct. 2011;49(6):608–22.

Mahian O, Kolsi L, Amani M, Estellé P, Ahmadi G, Kleinstreuer C, et al. Recent advances in modeling and simulation of nanofluid flows-Part I: Fundamentals and theory. Phys Rep. 2019; 790:1–48.

Xu J, Bandyopadhyay K, Jung D. Experimental investigation on the correlation between nano-fluid characteristics and thermal properties of Al2O3 nano-particles dispersed in ethylene glycol-water mixture. Int J Heat Mass Transf. 2016; 94:262–8.

Witharana S, Palabiyik I, Musina Z, Ding Y. Stability of glycol nanofluids - The theory and experiment. Powder Technol. 2013; 239:72–7.

Chakraborty S, Panigrahi PK. Stability of nanofluid: A review. Appl Therm Eng. 2020;174; 115259

Elias MM, Shahrul IM, Mahbubul IM, Saidur R, Rahim NA. Effect of different nanoparticle shapes on shell and tube heat exchanger using different baffle angles and operated with nanofluid. Int J Heat Mass Transf. 2014; 70:289–97.

Huminic G, Huminic A. Heat transfer and entropy generation analyses of nano fl uids in helically coiled tube-in-tube heat exchangers. Int Commun Heat Mass Transf. 2016; 71:118–25.

Zamzamian A, Oskouie SN, Doosthoseini A, Joneidi A, Pazouki M. Experimental investigation of forced convective heat transfer coefficient in nanofluids of Al2O3/EG and CuO/EG in a double pipe and plate heat exchangers under turbulent flow. Exp Therm Fluid Sci. 2011; 35(3):495–502.

Mohammed HA, Golieskardi M, Munisamy KM, Wahid MA. Combined convection heat transfer of nanofluids flow over forward-facing step in a channel having a blockage. Appl Mech Mater. 2013; 388:185–91.

Sheikholeslami M, Jafaryar M, Shafee A, Li Z. Nanofluid heat transfer and entropy generation through a heat exchanger considering a new turbulator and CuO nanoparticles. J Therm Anal Calorim. 2018; 134(3):2295–303.

Bahmani MH, Sheikhzadeh G, Zarringhalam M, Akbari OA, Alrashed AAAA, Shabani GAS, et al. Investigation of turbulent heat transfer and nanofluid flow in a double pipe heat exchanger. Adv Powder Technol. 2018; 29(2):273–82.

Li CH, Peterson GP. Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids). J Appl Phys. 2006;99(8).

Bejan A. Convection Heat Transfer. 4th ed. Hoboken, New Jersey: John Wiley & Sons; 2013. 168 to 169.

Hussein AM, Sharma K V., Bakar RA, Kadirgama K. The effect of cross-sectional area of tube on friction factor and heat transfer nanofluid turbulent flow. Int Commun Heat Mass Transf. 2013; 47:49–55.

Incropera FP, Bergman TL, Lavine AS, DeWitt DP. Fundamentals of Heat and Mass Transfer. 7th ed. Haboken, New Jersey: John Wiley & Sons; 2011. 537–558 p.

Gnielinski V. New Equations for Heat and Mass Transfer in Turbulent Pipe and Channel Flow. Int Chem Eng. 1976; 16(2):359–68.

Kaya H, Ekiciler R, Arslan K. CFD analysis of laminar forced convective heat transfer for TiO2/water nanofluid in a semi-circular cross-sectioned micro-channel. J Therm Eng. 2019;5(3):123–37.

Kaya H, Ekiciler R, Arslan K. Entropy Generation Analysis of Forced Convection Flow in a Semicircular Microchannel with TiO2/water Nanofluid. Heat Transf Res. 2019; 50(4):335–48.


Madde Ölçümleri

Ölçüm Çağırılıyor ...

Metrics powered by PLOS ALM

Refback'ler

  • Şu halde refbacks yoktur.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Selçuk-Teknik Dergisi  ISSN:1302-6178