ÖNGERİLMELİ I KESİTLİ SARGILI BETONARME KİRİŞLERİN KESME KAPASİTELERİNİN TAHMİNİNE YÖNELİK BİR ARAŞTIRMA

Mehmet Sait SERTKAYA, Musa Hakan ARSLAN

Öz


ÖNGERİLMELİ I KESİTLİ SARGILI BETONARME KİRİŞLERİN KESME KAPASİTELERİNİN TAHMİNİNE YÖNELİK BİR ARAŞTIRMA

Özet

Betonarme öngerilmeli beton kirişler, genellikle kullanım yükleri altında eğilme ve kesme kuvveti etkisindedir. Bazı durumlarda kiriş, eğilme kapasitesine ulaşmadan kesme etkisi altında da göçmektedir. Kirişlerin kesme etkisinden zarar görmemesi ve kirişin eğilme kapasitesine tam olarak ulaşabilmesi için kesme kapasitesinin doğru olarak belirlenmesi önemlidir. Bu çalışmada öngerilmeli betonarme kirişlerin kesme kapasitelerinin belirlenmesi için akıllı sistem tabanlı analitik bir çalışma gerçekleştirilmiştir. Çalışmada ilk olarak öngerilmeli betonarme kirişlerin kesme kapasitelerinin teorik hesaplarından bahsedilmiştir. Daha sonra ise bu konuda yapılan deneysel çalışmalar derlenerek deneyler hakkında açıklamalar ve deneylerin gruplandırmaları yapılmıştır. Kesme kapasitesinin belirlenmesinde oldukça fazla parametrenin etkisinin olması bu yorumlamaları zorlaştırmış olsa da çalışmanın bir sonraki ayağı olan akıllı sistem modellemesi ile kesme kapasitesinin belirlenmesi için önemli bir deneysel ve analitik altyapı oluşturulmuştur. Akıllı bir sistem türü olan yapay sinir ağları (YSA) hakkında bilgi verilerek analiz yöntemi tanıtılmış ve derlenen deneysel veri setinde yer alan betonarme ve öngerilmeli beton kirişlerin MATLAB paket programında YSA modellemeleri yapılmıştır. Modellemelerde kullanılan kirişlere ait parametreler doğrultusunda mevcut yönetmeliklere göre kiriş kesme kapasiteleri de ayrıca belirlenmiştir. Oluşturulan YSA modelleri ile mevcut tasarım ve yapım yönetmeliklerinin kiriş kesme kapasitesinin belirlenmesindeki performansları karşılaştırılmalı olarak değerlendirilmiştir. Yapılan karşılaştırmalarda YSA’nın yönetmelik yaklaşımlara göre oldukça yüksek bir tahmin oranına sahip olduğu görülmüştür.

Anahtar Kelimeler: Betonarme kiriş, kiriş kesme kapasitesi, öngerilmeli beton, yapay sinir ağları.

AN INVESTIGATION ON DETERMINATION OF SHEAR CAPACITY OF I SHAPED PRESTRESSED REINFORCED CONCRETE BEAMS WITH STIRRUPS

Abstract

Prestressed reinforced concrete beams are generally bending and shear under serfice loads. In some cases, the beam falls under the effect of shear without reaching the bending capacity. Accurate determination of the shear capacity becomes important so that the beams are not damaged by the shear effect. In addition, the shear capacity of the beam must be correctly determined so that the beam can fully reach its bending moment capacity. In this study, an intelligent system based analytical study was carried out to determine the shear capacities of prestressed reinforced concrete beams. In the study, the theoretical calculations of the shear capacities of prestressed concrete beams were first mentioned and then the experimental works carried out in this subject were compiled and groupings of explanations and experiments were made about the experiments. It is examined how the shear capacity changes according to each parameter according to the present experimental data. Although a lot of parametric effects have been made in determining the shear capacity, these interpretations have been difficult, but an important experimental and analytical infrastructure has been established for the determination of shear capacity by intelligent system modeling, which is the next step of the study. The analysis method is introduced by giving information about artificial neural networks (ANN) which is an intelligent system type and ANN models are made in the MATLAB package program of reinforced concrete and prestressed concrete beams in the complied experimental data set. Shear capacities of the beams are also determined according to the present regulations in line with the parameters of beams used in the models. The performance of the ANN models generated and the determination of the beam shear capacity of the present regulations have been evaluated comparatively. In the comparisons made, it was seen that ANN has a fairly high prediction ratio in regulatory approaches. Moreover, the success of ANN in predicting reinforced concrete beams is higher than the regulations norms.

Keywords:Artificial neural networks, prestressed concrete, reinforced concrete beam, shear capacity of beam.


Anahtar Kelimeler


Betonarme kiriş, kiriş kesme kapasitesi, öngerilmeli beton, yapay sinir ağları

Tam Metin:

PDF

Referanslar


Karadoğan F., Pala S., Yüksel E., Durgun Y., Yapı Mühendisliğine Giriş Yapısal Çözümleme, Birsen Yayınevi, İstanbul, 2011.

Celep Z., Betonarme Yapılar, İhlas Matbacılık, İstanbul, 2013.

Ali, M. K., 2010, Öngermeli Betonarme Köprü Kirişi Modellemesi, Yüksek Lisans Tezi, Gazi Üniversitesi Fen Bilimleri Enstitüsü, Ankara.

Onyemelukwe, O. U., Moussa Issa, P. E. and Mills, C. S., 2003, Field Measured Prestress Concrete Loses Versus Design Codes Estimates, Society for Experimental Mechanics, 201-215.

PCI Design Handbook, Precast and Prestressed Concrete, 2004, Chicago, USA

AASHTO, 2002, American Association of State Highway and Transportation Officials.

Du, J. S. and Au, F. T. K., 2005, Deterministic and Reliability Analysis of Prestressed Concrete Bridge Girders, Comparison of the Chinese, Hong Kong and AASHTO LRFD Codes, Structural Safety, Vol. 27, 230-245.

Fanning, P., 2001, Nonlineer Models of Reinforced and Post-tensioned Concrete Beams, EJSE International Electronic Journal of Structural Engineering, Vol.2, 111-119.

Arthur, P.D., 1965, The Shear Strength of Pre-Tensioned I- Beams with Unreinforced Webs, Magazine of Concrete Research, Vol. 17, No. 53, December, 199-210.

Bennett, E. W. and Balasooriya, B. M. A., 1971, Shear Strength of Prestressed Beams with Thin Webs Failing in Inclined Compression, ACI Journal Proceedings, Vol. 68, No. 3, 204-212.

Bennett, E. W. and Debaiky, S. Y., 1974, High-Strength Steel as Shear Reinforcement in Prestressed Concrete Beams, Shear in Reinforced Concrete, ACI SP-42, American Concrete Institute, 231-248.

Cederwall,K., Hedman, O. and Losberg, A., 1974, Shear Strength of Partially Prestressed Beams with Pretensioned of High Grade Deformed Bars, Shear in Reinforced Concrete, ACI SP 42-9, Amrican Concrete Institue, 215-230.

Cumming, D. A., Shield, C. K. and French, C. E., 1998, Shear Capacity of High-Strength Concrete Prestressed Girders, MN/RC-1998/12, Minnesota Department of Transportation, Minneapolis, MN, May, 291.

Durrani, A. J. and Robertson, I. N., 1987, Shear Strength of Prestressed Concrete T Beams with Welded Wire Fabric as Shear Reinforcement, PCI Journal, Vol. 32, No. 2, March-April, 46-61.

Elzanaty, A. H., Nilson, A. H. and Slate, F. O., 1986, Shear Capacity of Reinforced Concrete Beams Using High-Strength Concrete, ACI Journal Proceedings, Vol. 83, No. 2, March-April, 290-296.

Evans, R. H. and Schumacher, E. G., 1963, Shear Strength of Prestressed Beams Without Web Reinforcement, ACI Journal Proceedings, Vol. 60, November, 1621-1642.

Gregor, T. and Collins, M. P., 1995, Tests of Large Partially Prestressed Concrete Girders, ACI Structural Journal, Vol. 92, No. 1, 63-72.

Hicks, A. B., 1958, The Influence of Shear Span and Concrete Strength upon the Shear Resistance of a Pre-tensioned Prestressed Concrete Beam, Magazine of Concrete Research, Vol. 10, November, 115-122.

Jacob, J. and Russell, B., 1999, Effects of Horizontal Web Reinforcement on Shear Capacity Shear Ductility and Strand Anchorage, Transportation Research Board 78th Annual Meeting, January 10-14, 23.

Kar, J. N., 1969, Shear Strength of Prestressed Concrete Beams without Web Reinforcement, Magazine of Concrete Research, Vol. 21, No. 68, 159-170.

Kaufman, M. K. and Ramirez, J. A., 1988, Re-evaluation of the Ultimate Shear Behavior of High-Strength Concrete Prestressed I-Beams, ACI Structural Journal, Vol. 85, No. 3, May-June, 295-303.

Kim K. S., 2004, Shear behavior of RC Beams and Prestressed Concrete Beams, Thesis (PhD) University of Illinois at Urbana-Campaign.

Lynberg, B. S., 1976, Ultimate Shear Resistance of Partially Prestressed Reinforced Concrete I-Beams, ACI Journal Proceedings, Vol. 73, No. 4, April, 214-222.

MacGregor, J. G.,1958, Effect of Draped Reinforcement on Behavior of Prestressed Concrete Beams, Civil Engineering Studies, Structural Research Series No. 154, University of Illinois, May, 83.

MacGregor, J. G., 1960, Strength and Behavior of Prestressed Concrete Beams with Web Reinforcement, Doctorate Thesis, Graduate College, University of Illinois, Urbana, Illinois, July, 295.

Mahgoub, M. O., 1975, Shear Strength of Prestressed Concrete Beams without Web Reinforcement, Magazine of Concrete Research, Vol. 27, No. 93, December, 219-228.

Malone, B. J. and Ramirez, J. A., 2000, Shear Strength of High Strength Lightweight Prestressed Concrete Beams, Proceedings of the PCI/FHWA, September, 635-644.

Moayer, M. and Regan, P. E., 1974, Shear Strength of Prestressed and Reinforced Concrete T-Beams, ACI SP-42-8, Detroit, American Concrete Institute, 183-213.

Olesen, S. E., Sozen, M. A. and Siess, C. P., 1967, Investigation of Prestressed Reinforced Concrete for Highway Bridges, Part IV: Strength in Shear of Beams with Web Reinforcement, Engineering Experiment Station, Bulletin No. 493, University of Illinois, Urbana, 152.

Radogna, E. F., 1962, Esperienze Di Rottura Al Taglio Su Travi A Doppio T Con Armatura Pre-Tesa, Universita’ Degli Studi Di Roma.

Rangan, B. V., 1991, Web Crushing Strength of Reinforced and Prestressed Concrete Beams, ACI Structural Journal, Vol. 88, No. 1, 12-16.

Shahawy, M. A. and Batchelor, B., 1996, Shear Behavior of Full-Scale Prestressed Concrete Girders: Comprasion between AASHTO Specifications and LRFD Code, PCI Journal, Vol. 41, No. 3, May-June, 48-53.

Sozen, M. A., 1957, Strength in Shear of Reinforced Concrete Beams without Web Reinforcement, Civil Engineering Studies, Structural Research Series, No. 139, University of Illinois, August.

Zwoyer, E. M., 1953, Shear Strength of Simply Supported Prestressed Concrete Beams, Doctorate Thesis, Graduate College, University of Illinois, May.

TSE, TS 500, 2000, Betonarme Yapıların Tasarım ve Yapım Kuralları, Türk Standartları Enstitüsü, Ankara, 29-31.

TSE, TS 3233, 1979, Öngerilmeli Yapıların Hesap ve Yapım Kuralları, Türk Standartları Enstitüsü, Ankara, 1-44.

Sertkaya M.S., “Betonarme ve Öngerilmeli Beton Kirişlerin Kesme Kapasitelerinin Tahminine Yönelik Bir Araştırma” Selçuk Üniversitesi, Fen Bilimleri Enstitüsü, Devam Eden Yüksek Lisans Çalışması, 2017.


Madde Ölçümleri

Ölçüm Çağırılıyor ...

Metrics powered by PLOS ALM

Refback'ler

  • Şu halde refbacks yoktur.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Selçuk-Teknik Dergisi  ISSN:1302-6178