YERSEL LAZER TARAYICI NOKTA BULUTLARININ BİRLEŞTİRİLMESİ VE JEODEZİK KOORDİNAT SİSTEMİNE DÖNÜŞTÜRÜLMESİ: LİTERATÜR ARAŞTIRMASI
Öz
YERSEL LAZER TARAYICI NOKTA BULUTLARININ BİRLEŞTİRİLMESİ VE JEODEZİK KOORDİNAT SİSTEMİNE DÖNÜŞTÜRÜLMESİ: LİTERATÜR ARAŞTIRMASI
Özet
Yersel lazer tarayıcılarla üç boyutlu (3B) modelleme çalışmalarında, nokta bulutlarının birleştirilmesi en önemli işlem adımlarından birisidir. Bu amaçla bugüne kadar pek çok yöntem geliştirilmiştir, ancak lazer tarayıcı nokta bulutlarının birleştirilmesi hala önemli bir araştırma konusudur. Diğer yandan nokta bulutlarının otomatik birleştirilmesi de ciddi bir araştırma konusudur ve her türlü veri seti için uygulanabilecek standart bir yöntem bulunmamaktadır. Uygulanan yöntemler; otomasyon, doğruluk, hesaplama süresi, nokta yoğunluğu ve ölçü hatalarına duyarlık bakımından farklılıklar göstermektedir. Ayrıca lazer tarama verilerinin başka konumsal verilerle entegrasyonu için jeodezik koordinat sistemi gibi ortak bir koordinat sistemine dönüştürülmesi gerekir. Ölçme tekniği ve lazer tarayıcı aletinin konfigürasyonuna bağlı olarak jeodezik koordinatlandırma yöntemleri değişiklik göstermektedir. Bu çalışmada lazer tarayıcı nokta bulutlarının birleştirilmesinde kullanılan yöntemler sınıflandırılmış ve belirli özellikleri vurgulanmıştır. Böylece nokta bulutlarının birleştirilmesi ve jeodezik koordinat sistemine dönüştürülmesi konusunda uygulayıcı ve araştırmacılara yol gösterici olunması amaçlanmıştır.
Anahtar Kelimeler: Yersel lazer tarama, Nokta bulutu, Birleştirme, Üç boyutlu dönüşüm, LIDAR, Jeodezik koordinatlandırma.
REGISTRATION AND GEOREFERENCING METHODS FOR POINT CLOUDS OF TERRESTRIAL LASER SCANNER: A REVIEW
Abstract
Point cloud registration is bottle neck on three-dimensional (3B) modelling by using terrestrial laser scanner. Many methods have been developed for the registration of point clouds so far. Neverthless, it is still important research topic. Automatic registration of point clouds is also one of the important research topic on three-dimensional modelling. There are no standart methods for applying all type of data sets. The registration methods have different specicifications in respect to automation, accuracy, computation time, point density and susceptiblity from irregular points. On the other hand, the point clouds have to be registered into extensive coordinate system like this geodetic system for the integration with the other spatial data. Georeferencing methods of point clouds change according to measurement methods and configuration of laser scanner instrument. In this study, point cloud registration methods have been classified and emphasized their main properties. Thus, it had to be given informataion for the applicants and researchers about point cloud registration and georeferencing.
Keywords: Terrestrial laser scanning, Point cloud, Alignment, Three-dimensional registration, LIDAR, Georeferencing.
Anahtar Kelimeler
Tam Metin:
PDFReferanslar
Altuntas, C., Yildiz, F., Baygul, E., 2014, Documentation of historical structures in the courtyard of Mevlana Museum by terrestrial LIDAR and Photogrammetry, Mediterranean Archaeology and Archaeometry, Vol. 14, No. 2, pp. 249-258.
Boehm, J., 2009, Terrestrial LiDAR in Urban Data Acquisition, In: Fritsch,, (ed.) Photogrammetric Week ’09, Wichmann Verlag: Heidelberg, pp. 169-178.
Altuntas, C., Yildiz, F., 2013, Point cloud registration and virtual realization of large scale and more complex historical structures, ISPRS Conference on Serving Society with Geoinformatics, Antalya, ISPRS Archives–Vol. XL-7/W2, 13-18, 11-17 November.
Barazzetti, L., Sala, R., Scaioni, M., Cattaneo, C., Gibelli, D., Giussani, A., Poppa, P., Roncoroni, F., Vandonec, A., 2012, 3D scanning and imaging for quick documentation of crime and accident scenes, Proc. SPIE 8359, Sensors, and Command, Control, Communications, and Intelligence (C3I) Technologies for Homeland Security and Homeland Defense XI, 835910, 14 pages, 18 June.
Altuntaş, C., Yıldız, F., 2008, Yersel lazer tarayıcı ölçme prensipleri ve nokta bulutlarının birleştirilmesi, hkm Jeodezi, Jeoinformasyon ve Arazi Yönetimi Dergisi, Cilt 2008/1, Sayı 98, pp. 20-27.
Pfeifer, N., Briese, C., 2007, Geometric aspects of airborn laser scanning and terrestrial laser scanning, ISPRS Workshop on Laser Scanning 2007 and SilviLaser, Espoo, Finland, ISPRS Archives-Vol. XXXVI, Part3/W52, 311-319, September 12-14.
Schwarte, R., Heinol, H., Buxbaum, B., Ringbeck, T., Xu, Z., Hartmann, K., 1999, Principles of Three-Dimensional Imaging Techniques, in Handbook of Computer Vision and Applications, Jahne, B., Haussecker, H. and Geissler, P. (Eds,), Academic Press, ISBN 0-12-379771-3.
Chui, H., Rangarajan, A., 2003, A new point matching algorithm for non-rigid registration, Computer Vision and Image Understanding, Vol. 89, No. (2-3), pp. 114-141.
Wang, G., Wang, Z., Chen, Y., Zhao, W., 2015, A robust non-rigit point set registration method based on asymetric Gaussian representation, Computer Vision and Image Understanding, DOI: 10.1016/j.cviu.2015.05.014
Tam, G.K.L., Cheng, Z.Q., Lai, Y.K., Langbein, F.C., Liu, Y., Marshall, D., Martin, R.R., Sun, X.F., Rosin, P.L., 2007, Registration of 3D Point Clouds and Meshes: A Survey From Rigid to Non-Rigid, Journal of Latex Class Files, Vol. 6, No. 1, pp. 1-20.
Diez, Y., Roure, F., Llado, X., Salvi, J., 2015, A qualitative review on 3D coarse registration methods, ACM Computing Surveys, Vol. 47, No. 3, Article 45, p.36 pages.
Besl, P.J., McKay, N.D., 1992, A method for registration of 3-D shapes, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 14, No. 2, pp. 239-256.
Chen, Y., Medioni, G., 1992, Object modelling by registration of multiple range images, Image and Vision Computing, Vol. 10, No. 3, pp. 145–155.
Johnson, A.E., Kang, S.B., 1999, Registration and integration of textured 3D data, Image and Vision Computing, Vol. 17, No. 2, pp. 135-147.
Fitzgibbon A.W.,2003, Robust registration of 2D and 3D point sets, Image and Vision Computing, Vol. 21, No. 13, pp. 1145–1153.
Chetverikov D., Stepanov, D., Krsek, P., 2005, Robust Euclidean alignment of 3D point sets:the trimmed iterative closest point algorithm, Image and Vision Computing, Vol. 23, No. 3, pp. 299-309.
Liu Y., 2006, Automatic registration of overlapping 3D point clouds using closest points, Image and Vision Computing, Vol. 24, No. 7, pp. 762–781.
Bae K., Lichti D.D., 2008. A method for automated registration of unorganised point clouds, ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 63, No. 1, pp. 36–54.
Altuntas, C., 2014a, The effect of point density on the registration accuracy of a terrestrial laser scanning dataset, Lasers in Engineering, Vol. 28, No. (3-4), pp. 213-221.
Pomerleau, F., Colas, F., Siegwart, R., Magnenat, S., 2013, Comparing İEYN variants on real-world data sets, Autonomous Robots, Vol. 34, No. 3, pp. 133–148.
Bellekens, B., Spruyt, V., Berkvens, R., Weyn, M., 2014, A survey of rigid 3D pointcloud registration algorithms, The Fourth International Conference on Ambient Computing, Applications, Services and Technologies, Rome, Italy, 8-13, 24-28 August.
Gruen, A., 1985, Adaptive least squares correlations: A poverful image matching technique, South African Journal of Photogrametry, Remote Sensing and Cartography, Vol. 14, No. 3, pp. 175-187.
Gruen, A., Akca, D., 2005, Least squares 3D surface and curve matching, ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 59, No. 3, pp. 151-174.
Akca, D., 2004, A new algorithm for 3D surface matching, 20th ISPRS Congress, Istanbul, Turkey, ISPRS Archives-Vol. XXXV, Part B5, 1020-1025, 12-23 July.
Akca, D., Gruen, A., 2005, Fast correspondance search for 3D surface matching, ISPRS WG III/3, III/4, V/3 Workshop Laser scanning 2005, Enschede, The Netherlands, ISPRS Archives – Vol. XXXVI-3/W19, 186-191, September 12-14.
Akca, D., 2007, Matching of 3D surfaces and their intensities, ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 62, No. 2, pp. 112-121.
Chen, Y., Medioni, G., 1991. Object modelling by registration of multiple range images, IEEE International Conference on Robotics and Automation, Sacramento, CA, 2724–2729, 9–11 April.
Grant, D., Bethel, J., Crawford, M., 2012, Point-to-plane registration of terrestrial laser scans, ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 72, pp. 16-26.
Masuda, T. 2002, Object shape modelling from multiple range images by matching signed distance fields, IEEE First International Symposium on 3D Data Processing Visualization and Transmission, Padova, Italy, 439–448, June 19-21.
Masuda, T., 2001, Generation of geometric model by registration and integration of multiple range images, IEEE Third International Conference on 3-D Digital Imaging and Modeling, Quebec City, Que, 254–261, 28 May-01 Jun.
Tarel, J.P., Boujemaa, N., 1999, A coarse to fine registration method based on robust fuzzy clustering, Computer Vision and Image Understanding, Vol. 73, No. 1, pp. 14-28.
Lomonosov, E., Chetverikov, D., Ekart, A., 2006, Pre-registration of arbitrarily oriented 3D surfaces using a genetic algorithm, Pattern Recognition Letters, Vol. 27, No. 11, pp. 1201–1208.
Hanke, K., Schenk, S., 2014, A genetic algorithm approach for the rigorous registration of arbitrary laser scanner point clouds, Engineering Computation (in Gunter H editor), Springer Cham Heidelberg New York Dordrecht London.
Silva, L., Bellon, O.R.P., Boyer, K.L., 2007, Multiview range image registration using the surface interpretation measure, Image and Vision Computing, Vol. 25, No. 1, pp. 114-125.
Liu, H., Yan, J., Zhang, D., 2006, “Three-dimensional surfaces registration: A neural network strategy”, Neurocomputing, Vol. 70, No. (1-3), pp. 597-602.
Salvi, J., Matabsoch, C., Fofi, D., Forest, J., 2007, “A review of recent range image registration methods with accuracy evaluation”, Image and Vision Computing, Vol. 25, No. 5, pp. 578-596.
Chow, C., Tsui, H., Lee, T., 2004, Surface registration using a dynamic genetic algorithm, Pattern Recognition, Vol. 37, No. 1, pp. 105–117.
Yamany, S.M., Ahmed, M.N., Farag, A.A., 1999. A new genetic-based technique for matching 3d curves and surfaces, Pattern Recognition, Vol. 32, No. 10, pp. 1817, 1999.
Theiler, P.W., Wegner, J.D., Schindler, K., 2014, Keypoint-based 4-points Congruent Sets - Automated marker-less registration of laser scans, ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 96, pp. 149-163.
Mutzel, A., Neuhaus, F., Paulus, D., 2015, Geometric features for robust registration of point clouds, Patern Recognition and Image Analysis, Vol. 25, No. 2, pp. 174-186.
Huang, J., You, S., 2012, Point cloud matching based on 3D self-similarity, IEEE Computer Vision and Pattern Recognition Workshops (CVPRW), Providence, RI, 41-48, 16-21 June.
Cirujeda, P., Cid, Y.D., Mateo, X., Binefa, X., 2015, A 3D scene registration method via covariance descriptors and an avolutionary stable strategy game theory solver, International Journal Computer Vision, DOI 10.1007/s11263-015-0820-2.
He, B., Lin, Z., Li, Y.F., 2013. An automatic registration algorithm for the scattered point clouds based on the curvature feature, Optics and Laser Technology, Vol. 46, pp. 53-60.
Körtgen, M., 2007, Robust automatic registration of range images with reflectance, Diplomarbeit, Vorgelect am Institut for Informatic, Rheinische Friedrich-Wilhelms-Universitat Bonn.
Weinmann, Ma., Weinmann, Mi., Hinz, S., Jutzi, B., 2011, Fast and automatic image-based registration of TLS data, ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 66, No. 6, pp. S62-S70.
Han, J.Y., Perng, N.H., Lin, Y.T., 2013, Feature conjunction for intensity-coded LIDAR point clouds, Journal of Surveying Engineering, Vol. 139, No. 3, pp. 135-142.
Altuntas, C., 2014b. Pair-wise automatic registration of three-dimensional laser scanning data from historical building by created two-dimensional images, Optical Engineering, Vol. 53, No. 5, Article 053108, pp. 1-6.
Bendels, G.H., Degener, P., Wahl, R., Körtgen, M., Klein, R., 2004, Image-based registration of 3d-range data using feature surface elements, The 5th international sysmposium on virtual reality, Archeology and Cultural Heritage (VAST-2004), Oudenaarde, Belgium, 115-124, December 7-10.
Boehm, J., Becker, S., 2007, Automatic Marker-Free Registration of Terrestrial Laser Scans using Reflectance Features, 8th Conference on Optical 3D Measurment Techniques, Zurich, Switzerland, 338-344, 9-12 July.
Smith, E.R., King, B.J., Stewart, C.V., Radke, R.J., 2008, Registration of combined range-intensity scans: Initialization through verification, Computer Vision and Image Understanding, Vol. 110, No. 2, pp. 226-244.
Barnea, S., Filin, S., 2008, Keypoint based autonomous registration of terrestrial laser point-clouds, ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 63, No. 1, pp. 19-35.
Kang, Z., Li, J., Zhang, L., Zhao, Q, Zlatanova, S., 2009, Automatic registration of terrestrial laser scanning point clouds using panoramic reflectance images, Sensors, Vol. 9, pp. 2621-2646.
Chung, D.H., Yun, I.D., Lee, S.U., 1998, Registration of multiple-range views using the revers-calibration technique, Pattern Recognition, Vol. 31, No. 4, pp. 457-464.
Liu, R., Hirzinger, G., 2005, Marker-free automatic matching of range data, Panoramic Photogrammetry Workshop, Berlin, Germany, ISPRS Archives–Vol. XXXVI-5/W8, 5 pages, 24-25 February.
Mian, A.S., Bennamoun, M., Owens, R.A., 2006, A novel representation and feature matching algorithm for automatic pairwise registration of range images, International Journal of Computer Vision, Vol. 66, No. 1, pp. 19-40.
Liao, Y., Xu, F., Zhao, X., Hagivara, X., 2014, A point cloud registration method based on point cloud region and application samples, S. Tanaka et al. (Eds.): AsiaSim 2014, Springer-Verlag Berlin Heidelberg, CCIS 474.
Dold, C., 2005, Extended Gausian images for the registartion of terrestrial scan data, ISPRS Workshop Laser Scanning 2005, Enschede, the Netherlands, ISPRS Archives – Vol. XXXVI-3/W19, 180-185, September 12-14.
Makadia A., Patterson A. and Daniilidis K., 2006, Fully automatic registration of 3D point clouds, IEEE Conference on Computer Vision and Pattern Recognition, New York, NY, 1297-1304, 18-20 June.
Berner, A., Bokeloh, M., Wand, M., Schilling, A., Seidel, H. P., 2008, A graph-based approach to symmetry detection, In Symposium on volume and point-based graphics, Eurographics Association, Los Angeles, pp. 1-8.
Ergun, B., 2010, A novel 3D geometric object filtering function for application in indoor area with terrestrial laser scanning data, Optics and Laser Technology, Vol. 42, No. 5, pp. 799-804.
Zhang, D., Huang, T., Li, G., Jiang, M., 2012. Robust algorithm for registration of building point clouds using planar patches, Journal of Surveying Engineering, Vol. 138, No. 1, pp. 31-36.
Theiler, P.W., Schindler, K., 2012, Automatic registration of terrestrial laser scanner point clouds using natural planar surfaces. XXIIth ISPRS Congress, Melbourne, Australia, ISPRS Annals, Volume I-3, 173-178, 25 August–01 September.
Friedman, S., Stamos, I., 2012, Online detection of repeated structures in point clouds of urban scenes for compression and registration, International Journal of Computer Vision, Vol. 102, No. (1-3), pp. 112-128.
Schnabel, R., Wahl, R., Klein, R., 2007, Efficient RANSAC for point-cloud shape detection, Computer Graphics Forum, Vol. 26, No. 2, pp. 214-226.
He, W., Ma, W., Zha, H., 2005, Automatic registration of range images based on correspondence of complete plane patches, IEEE Fifth International Conference on 3D Digital Imaging and Modeling (3DIM), Ottawa, Ontario, Canada, 470-475, 13-16 June.
Benjemaa, R., Schmitt, F., 1999, Fast global registration of 3D sampled surfaces using a multi-z-buffer technique, Image and Vision Computing, Vol. 17, No. 2, pp. 113-123.
Pulli, K., 1999, Multiview registration for large data sets, IEEE 2nd International Conference on 3-D Digital Imaging and Modeling, Ottawa, Ontario, 160–168, 04 Oct-08 Oct.
Nurunnabi, A., Belton, D., West, G., 2014, Robust statistical approaches for local planar surface fitting in 3D laser scanning data, IPSRS Journal of Photogrammetry and Remote Sensing, Vol. 96, pp. 106-122.
Breuel, T.M., 2003, Implementation techniques for geometric branch-and-bound matching methods, Computer Vision and Image Undersanding, Vol. 90, No. 3, pp. 258-294.
Olsson, C., Kahl, F., Oskarsson, M., 2009, Branch-and-bound methods for Euclidean registration problems, IEEE Transsactions on Pattern Analysis and Machine Intelligence, Vol. 31, No. 5, pp. 783-794.
Li, H., Hartley, R.I., 2007, The 3D-3D registration problem revisited, IEEE 11th International Conference on Computer Vision, Rio de Janeiro, 1-8, 14-21 October.
Bonarrigo, F., Signoroni, A., 2014, Global registration of large collections of range images with an improved Optimization-on-a-Manifold approach, Image and Vision Computing, Vol. 32, No. (6-7), pp. 437–451.
Papazov, C., Burschka, D., 2011, Stochastic global optimization for robust point set registration, Computer Vision and Image Understanding, Vol. 115, No. 12, pp. 1598-1609.
Lee, P.Y., 2005, Geometric optimization for computer vision, Ph.D. Thesis, Australian National University, Canberra.
Boughorbel, F., Mercimek, M., Koschan, A., Abidi, M., 2010, A new method for the registration of three-dimensional point-sets: The Gaussian fields framework, Image and Vision Computing, Vol. 28, No. 1, pp. 124-137.
Huber, D., Hebert, M., 2003, Fully automatic registration of multiple 3D data sets, Image and Vision Computing, Vol. 21, No. 7, pp. 637-650.
Mateo, X., Orriols, X., Binefa, X., 2014, Bayesian perspective for the registration of multiple 3D views, Computer Vision and Image Understanding, Vol. 118, pp. 84-96.
Ripperda, N., Brenner, C., 2005, Marker-free registration of terrestrial laser scans using the normal distribution transform, 3D-ARCH Workshop, Mestre-Venice, Italy, ISPRS Archives–Vol. XXXVI-5/W17, 7 pages, 22-24 August.
Pottman, H., Huang, Q.X., Yang, Y.L., Hu, S.M., 2006, Geometry and convergence analysis of algorithms for registration of 3D shapes, International Journal of Computer Vision, Vol. 67, No. 3, p. 277-296.
Krishnan, S., Lee, P.Y., Moore, J.B., Venkatasubramanian, S., 2005, Global registration of multiple 3D point sets via optimization-on-a-manifold, Third Eurographics Symposium on Geometry Processing, Vienna, Austria, July 4-6.
Krishnan, S., Lee, P.Y., Moore, J.B., Venkatasubramanian, S., 2007, Optimisation-on-a manifold for global registration of multiple 3D point sets, International Journal Intelligent Systems Technologies and Applications, Vol. 3, No. (3/4), pp. 319–340
Fischler, M.A., Bolles, R.C., 1981, Random Sample Consensus: A paradigm for model fitting with applications to image analysis and automated cartography, Graphics and image processing, Vol. 24, No. 6, pp. 381-395.
Chen, C.S., Hung, Y.P., Cheng, J.B., 1999, RANSAC-Based DARCES: A new approach to fast automatic registration of partially overlapping range images, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 21, No. 11, pp. 1229-1234.
Li, X., Ning, Z., Xiang, L., 2005, Robust 3D reconstruction with outliers using RANSAC based singuler value decomposition, IEICE Transactions on Information and Systems, Vol. E88-D, No. 8, pp. 2001-2004.
Xiao, G., Ong, S.H., Foong, K.W.C., 2007, 3D registration of partially overlapping surface using a volumetric approach, Image and Vision Computing, Vol. 25, No. 6, pp. 934-944.
Feldmar, J., Ayache, N., 1994, Rigit, Affine and localy affine registration of free-form surfaces, Research Report, RR-2220, 1994. (inria-00074451).
Reyes, L., Medioni, G., Bayro, E., 2007, Registration of 3D points using geometric algebra and tensor voting, International Journal of Computer Vision, Vol. 75, No. 3, pp. 351-369.
Robertson, C., Fisher, R.B., 2002, Parallel evolutionary registration of range data, Computer Vision and Image Understanding, Vol. 87, No. (1-3), pp. 39-50.
Tarel, J., Civi, H., Cooper, D., 1998, Pose estimation of free-form 3d objects without point matching using algebraic surfaces models, IEEE workshop on Model-Based 3D Image Analysis, 13-21, January 3.
Flöry, S., 2010, Constrained matching of point clouds and surfaces, Ph.D. studies in Applied Geometry, Vienna University of Technology, Fakültat für Mathematic und Geoinformation, Austria.
Yang, B., Zang, Y., 2014, Automated registration of dense terrestrial laser-scanning point clouds using curves, ISPRS Journal of Photogrametry and Remote Sensing, Vol. 95, pp. 109-121.
Wyngaerd, J.V., Gool, L.V., 2002, Automatic crude patch registration: toward automatic 3D model building, Computer Vision and Image Understanding, Vol. 87, No. (1-3), pp. 8-26.
Stamos, I., Leordeanu, M., 2003, Automated feature-based range registration of urban scenes of large scale, IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Vol. 2, 555-561, 18-20 June.
Chao, C., Stamos, I., 2005, Semi-automatic range to range registration: a feature-based method, IEEE Fifth International Conference on 3-D Digital Imaging and Modeling, Ottawa, Ontairo, Canada, 254-261, 13-16 June.
Scaioni, M., Forlani, G., 2003, Independent model triangulations of terrestrial laser scanner data, In proc. of Vision Techniques for Digital Architectural and Archaeological Archives, Portonovo - Ancona , Italy, ISPRS Archives–Vol. XXXIV-5/W12, 308-313, July 1-3.
Akca, D., 2003, Full automatic registration of laser scanner point clouds, In: Gruen, A., Kahmen, H. (Eds.), Optical 3-D Measurement Techniques VI, Zurich, Switzerland, September 22-25, vol. I, 330-337.
Wendt, A., Dold, C., 2005, Estimation of interior orientation and eccentricity parameters of a hybrid imaging and laser scanning sensor, Panoramic Photogrammetry Workshop, Berlin, Germany, ISPRS Archives–Vol. XXXVI-5/W8, 7 pages, 24-25 February.
Al-Manasir, K., Fraser, C.S., 2006a, Registration of terrestrial laser scanner data using imagery, The Photogrammetric Record, Vol. 21, No. 115, pp. 255-268.
Altuntas, C., Yildiz, F., 2012. The registration of laser scanner three-dimensional point clouds using two-dimensional images recorded with a sensor combination camera, Lasers in Engineering, Vol. 23, No. (3-4), pp. 163-181.
Wyngaerd, J.V., Gool, L.V., 2003, Combining texture and shape for automatic crude patch registration, IEEE Conference on 3-D Digital Imaging and Modeling, Alberta, Canada, 179-186, 6-10 October.
Barnea, S., Filin, S., 2007, Registration of terrestrial laser scans via image based features, ISPRS Workshop on Laser Scanning 2007 and Silvilaser 2007, Espoo, Finland, ISPRS Archives–Vol. XXXVI-3/W52, 32-37, September 12-14.
Al-Manasir, K., Fraser, C.S., 2006b, Automatic registration of terrestrial laser scanner data via imagery, ISPRS Commission V Symposium, Dresden, ISPRS Archives – Vol. XXXVI, Part 5, 6 pages, September 25-27.
Dold, C., Brenner, C., 2006, Registration of terrestrial laser scanning data using planar patches and image data, ISPRS Commission V Symposium, Dresden, Germany, ISPRS Archives–Vol. XXXVI Part 5, 78-83, September 25-27.
Perfetti, N., Pellegrinelli, A., Ursa, M.G.D., Russo, P., 2005, A combined system of digital photogrammetry and laser scanning, CIPA XXth International Symposium, Torino, Italy, 4 pages, 26 September-01 October.
Schuhmacher, S., Böhm, J., 2005, Georeferencing of terrestrial laser scanner data for applications in architectural modeling, 3D-ARCH Workshop, Mestre-Venice, Italy, ISPRS Archives Vol. XXXVI-5/W17, 7 pages, 22-24 August.
Scaioni, M., 2005. Direct georeferencing of TLS in surveying of complex sites, 3D-ARCH Workshop, Mestre, Venice, Italy, ISPRS Archives-Vol. XXXVI-5/W17, 8 pages, 22-24 August.
Elkharachy, I., Neimeier, W., 2006. Optimization and strength aspects for geo-referencing data with terrestrial laser scanner systems, 3D IAG712th FIG symposium, Baden, Austria, p.10 pages, May 22-24.
Lichti, D.D., Gordon, S.J., 2004, Error propagation in directly georeferenced terrestrial laser scanner point clouds for cultural heritage recording, FIG Working Week, Athens, Greece, 1-16, May 22-27.
Lichti, D.D., Gordon, S.J., Tipdecho, T., 2005. Error models and propagation in directly georeferenced terrestrial laser scanner networks, Journal of Surveying Engineering, Vol. 131, No. 4, pp. 135-142.
Balzani, M., Pellegrinelli, A., Perfetti, N., Russo, P., Uccelli, F., Tralli, S., 2002, CyraxTM 2500 Laser Scanner and GPS operational flexiblity: From Detailed Close Range Surveying to urban Scale Surveying, Proc. CIPA WG 6 int. WS scanning for cultural heritage recording, Corfu, 27-32, September 1-2,.
Reshetyuk, Y., 2010, Direct georeferencing with GPS in terrestrial laser scanning, Zeitschrift für Geodasie, Geoinformation und Landmanagement, Vol. 1335, No. 3, pp. 151-159.
Martensson, S.G., Reshetyuk, Y., Jivall, L., 2012, Measurement uncertainty in network RTK GNSS-based positioning of a terrestrial laser scanner, Journal of Applied Geodesy, Vol. 6, No. (1), pp. 25-32.
Böhm, J., Haala, N., Alshawabkeh, Y., 2006. Automation in laser scanning for cultural heritage applications. In: Baltsavias, E., Gruen, A., Van Gool, L., Pateraki, M. (Eds.), Recording, Modeling and Visualization of Cultural Heritage, Taylor & Francis Group, London, pp. 443–450.
Paffenholz, J.A., 2012, Direct geo-referencing of 3D point clouds with 3D positioning sensors, PhD Dissertation, Deutsche Geodaticshe Kommission bei der Bayerischen Akademie der Wissenschaften, München.
Olsen, M.J., Johnstone, E., Driscoll, N., Ashford, S.A., Kuester, F., 2009, Terrestrial laser scanning of extended cliff sections in dynamic environments: Parameter Analysis, Journal of Surveying Engineering, Vol. 135, No. 4, pp. 161-169.
Altuntas, C., Karabork, H., Tusat, E., 2014, Georeferencing of ground-based LIDAR data using continuously operating reference stations, Optical Engineering, Vol. 53, No. 11, Article 114110, pp. 1-7.
Wilkinson, B.E., Mohamed, A.H., Dewitt, B.A., Seedahmed, G.H., 2010, A novel approach to terrestrial lidar georeferencing, Photogrammetric Engineering Remote Sensing, Vol. 76, No. 6, pp. 683-690.
Böhm, J., Haala, N., 2005, Efficient integration of aerial and terrestrial laser data for virtual city modeling using lasermaps, In: Vosselman, G., Brenner, C. (Eds.), ISPRS Workshop Laser Scanning 2005, Enschede, the Netherlands, ISPRS Archives Vol. XXXVI-3/W19, 192-197, September 12-14.
Madde Ölçümleri
Metrics powered by PLOS ALM
Refback'ler
- Şu halde refbacks yoktur.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Selçuk-Teknik Dergisi ISSN:1302-6178