SIVI-SIVI ARAYÜZEY ADSORBSİYONU VE KOMPLEKS OLUŞUMUNUN GEREKLİLİĞİ VE YETERLİLİĞİ ÜZERİNE TARAMA-İNCELEME
Öz
SIVI-SIVI ARAYÜZEY ADSORBSİYONU VE KOMPLEKS OLUŞUMUNUN GEREKLİLİĞİ VE YETERLİLİĞİ ÜZERİNE TARAMA-İNCELEME
Özet
Bu çalışmada, katı-sıvı, sıvı-sıvı arayüzey adsorpsiyonları ile ilgili bilgiler verilerek, sıvı/sıvı arayüzey adsorpsiyonu ve kompleks oluşumu üzerinde durulmuştur. Sıvı-sıvı arayüzey absorpsiyonu üzerine yapılan çalışmalar taranarak derlenmiştir. Sıvı-sıvı arayüzey adsorpsiyonda gerçekleştirilen uygulamalara yapılan çalışmada yer verilerek membran destekli sıvı ekstraksiyonu, petrol kazanımı, sıvı doğal iyileştirme gibi uygulamalardan bahsedilmiştir. Bununla birlikte sıvı-sıvı arayüzeyi adsorpsiyonu uygulama sahasında geniş bir yelpaze çizerek metal, yarı-iletkenlerin ve oksit nanokristallerin fonksiyonel hale getirmek için de kullanıldıkları tespit edilmiştir. Yapılan tarama derleme çalışmasında sıvı-sıvı arayüzey adsorpsiyonlarının nano teknolojideki yerinden bahsedilerek literatür çalışmaları ile desteklenmiştir. Nanopartiküllerin hidrofobik gibi özellik kazandırılmasında sıvı arayüzeylerinde adsorpsiyon prosesinin etkin olduğu görülmüştür.
Anahtar Kelimeler: Sıvı-sıvı adsorpsiyon, Arayüzey, Kompleks oluşumu
SCAN-REVIEW ON REQUIREMENTS AND SUFFICIENCY OF LIQUID-LIQUID ADSORPTION AND COMPLEX FORMATION
Abstract
In this study, information about the solid-liquid, liquid-liquid interface adsorption is given and we focused on liquid / liquid interfacial adsorption and complex formation. Numerous studies about the liquid-liquid interface adsorption are screened and collected. In this study, some applications included with the liquid-liquid interface adsorption are presented, it is explained that some applications, such as liquid natural healing, supported liquid membrane extraction, oil recovery. However, it was found that liquid-liquid interface adsorption draws a wide range at applications, furthermore, it is also used to make functional the semiconductor, metal and oxide nano-crystals. In the compilation of screening study, the place of the liquid-liquid interface in nanotechnology areas is described it was supported by literature studies. It is found to be; adsorption processes of liquid interface are effective about to gain hydrophobic properties of nanoparticles.
Keywords: Liquid- liquid adsorption, Interface, Complex formation
Anahtar Kelimeler
Tam Metin:
PDFReferanslar
Ross S, Chen E.S. Adsorption and Thermodynamics at the Liquid-Liquid Interface, Ind. Eng. Chem., 1965, 57, 7, pp 40–52, DOI: 10.1021/ie50667a006
Demir E, Yalçın H, Adsorbentler: Sınıflandırma, Özellikler, Kullanım ve Öngörüler, Türk Bilimsel Derlemeler Dergisi 7, 2: 70-79, 2014.
Loureiro J.M. Kartel M.T., Combined and Hybrid Adsorbents: Fundamentals and Applications. Proceedings of the NATO Advanced Research Workshop, 2005, p. 370.
Samiey B, Cheng C.-H. Wu J., Organic-inorganic hybrid polymers as adsorbents for removal of heavy metal ions from solutions: A Review Materials, 7, 2014, 673–726.
Gómez-Pastora, J, Bringas E. Inmaculada Ortiz, I, Recent progress and future challenges on the use of high performance magnetic nano-adsorbents in environmental applications. Chemical Engineering Journal, 2014, 256, 187–204.
Akhtara, F, Anderssonb, L, Ogunwumic, S, Hedina, N. Bergströma, L, Structuring adsorbents and catalysts by processing of porous powders, Journal of the European Ceramic Society, 34, 2014, 1643- 1666.
http://biyokure.org/adsorpsiyon-izotermleri/6499.
Abraham N, Sebok D, Papp S, Korösi L, Dekany I, Two-dimensional arrangement of monodisperse ZnO particles with Langmuir–Blodgett technique, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 384: Issues 1–3, 2011, p. 80-89.
Erentürk S, Malkoç E, Removal of lead by adsorption onto Viscum album L.: Effect of temperature and equilibrium isotherm analyses, Applied Surface Science, Volume 253, Issue 10, 15, 2007, p.4727-4733.
Jaroniec M, Adsorption on heterogeneous surfaces: The exponential equation for the overall adsorption isotherm, Surface Science, 50, Issue 2, 1975, p. 553-564.
Moiseev Y., Panov V., Savinov S., Yaminsky I., Todua P., Znamensky D., Atomic force and scanning tunneling microscopy of comb-like cholesteric liquid crystalline polymer LB films, Ultramicroscopy, 42–44, Part 1, 1992, p. 304-309.
Bascetin E., Haznedaroglu H., Erkol A.Y., The adsorption behavior of cesium on silica gel, Applied Radiation and Isotopes, Volume 59, Issue 1, 2003, p: 5-9.
H.W. Duan, D.Y. Wang, N.S. Sobal, M. Giersig, D.G. Kurth and H. Mohwald, Nano Lett. , 2005, 5, 949–952.
Lin Y., Skaff H., Boker A., Dinsmore A. D., Emrick T. Russell T. P., J. Am. Chem. Soc., 2003, 125, 12690–12691.
Skaff H., Lin Y., Tangirala R., Breitenkamp K., Boker A., Russell T.P. Emrick T., Adv. Mater. , 2005, 17, 2082.
Russell J. T., Lin Y., Boker A., Su L., Carl P., Zettl H., He J. B., Sill K., Tangirala R., Emrick T., Littrell K., Thiyagarajan P., Cookson D., Fery A., Wang Q. Russell T. P., Angew. Chem., Int. Ed. 2005, 44, 2420–2426.
Glogowski E., Tangirala R., He J. B., Russell T. P. Emrick T., Nano Lett., 2007, 7, 389–393.
Arumugam P., Patra D., Samanta B., Agasti S.S., Subramani C. Rotello V.M., Journal of Am. Chem. Soc., 2008, 130, 10046.
Xia H. Wang D., Adv. Mater., 2008, 20, 4253–4256.
Binks B.S. Horozov T.S., Colloidal particles at liquid interfaces, Cambridge University Press, Cambridge, 2006.
Bresme F. Oettel M., J. Phys.: Condens, Matter, 2007, 19, 413101.
Pieranski P., Phys. Rev. Lett., 1980, 45, 569–572.
Reincke F., Kegel W. K., Zhang H., Nolte M., Wang D. Y., Vanmaekelbergh D. Mohwald H., Phys. Chem. Chem. Phys. , 2006,8, 3828–3835.
Park Y. K., Yoo S. H. Park S., Langmuir, 2007, 23, 10505–10510.
Park Y. K. Park S., Chem. Mater., 2008, 20, 2388–2393.
Oettel M. Dietrich S., Langmuir, 2008, 24, 1425–1441.
Bresme F., Lehle H. Oettel M., J. Chem. Phys., 2009, 130, 214711.
Lin Y., Skaff H., Emrick T., Dinsmore A. D. Russell T. P., Science, 2003, 299, 226–229.
Duan H. W., Wang D. A., Kurth D. G. Mohwald H., Angew, Chem., Int. Ed., 2004, 43, 639–5642.
Girault H.H., Schiffrin D., J.Electroanal, Chem. 179, 1984, 277.
E. Saint Martin, O. Konovalov, J. Daillant, Thin Solid Films 515, 2007, 5687.
Santos H.A., Ferreira E.S., Pereira E.J., Pereira C.M., Kontturi K., Silva F., Chem. Phys. Chem 8, 2007, 1540.
Santos H.A., Carlsson S., Murtomaki L., Kontturi K., Chem Phys Chem 8, 2007, 913.
Huang J., Chen L., Zhang X., Liu S., Li G., Electrochem, Commun, 10, 2008, 451.
Liu X.H., Yang J., Zuo G.F., Zhang K., Dong C.W., X.Q. Lu, J. Phys. Chem. C 112, 2008, 148.
Zhang J., Unwin P.R., Langmuir 18, 2002, 2313.
Martin A, Bustamante P, Chun AHC, "Interfacial phenomena", Physical Pharmacy 4th ed., Ed: A Martin, P Bustamante, AHC Chun, Williams&Wiikins, Maryland, 1993, s: 362-367.
http://www.e-kutuphane.teb.org.tr
Prochaska K, Staszak K., Adsorption at the liquid/liquid interface in mixed systems with hydrophobic extractants and modifiers 1. Study of equilibrium interfacial tension at the hydrocarbon/water interface in binary mixed systems, J Colloid Interface Sci. 2005 May 1;285 1:1-8.
Alemu H., Pure Appl. Chem. 76, 2004, 697.
Samec Z., Pure Appl. Chem. 76, 2004, 2147.
Girault H.H., C.G. Bard, A.J. Zoski, Electroanal. Chem., vol. 23, Taylor and Francis Group 2010, pp. 1–104.
Iglesias R.A., Dassie S.A., Ion Transfer at Liquid-Liquid Interfaces, Nova Publishers, New York, 2010.
Osakai T., Hirai T., Wakamiya T., Sawada S., Phys. Chem. Chem. Phys. 8, 2006, 985.
Garcia J.I., Iglesias R.A., Dassie S.A., J. Electroanal Chem, 586, 2006, 225.
Dassie S.A., J. Electroanal Chem, 578, 2005, 159.
Dassie S.A., J. Electroanal Chem, 585, 2005, 256.
Reymond F., Steyaert G., Carrupt P.-A., Testa B., Girault H.H., J. Am. Chem. Soc. 118, 1996, 11951.
Tsionsky, M., Bard, A.J., Mirkin, M.V., 1997, Long-range electron transfer through a lipid monolayer at the liquid/liquid interface, J. Am. Chem. Soc., 119 44, 10785-10792.
Yudi, L. M., Santos, E., Baruzzi, A. M., Solis, V. M., 1994, Erythromycin transfer across the water/1,2-dichloroethane interface modified by a phospholipid monolayer, J. Electroanal. Chem., 379, 1-2, 151-158.
Rowlinson J.S. Widom B., Molecular Theory of Capillarity Clarendon: Oxford 1982.
McUmbre A.C., Larson N.R., Randolph T.R., Schwartz D.K., Langmuir 31, 5882, 2015.
Arai K., Kusu F., Takamura K., in Liquid-Liquid Interfaces: Theory and Methods, edited by A. G. Volkov and D. W. Deamer [CRC Press, Boca Raton, FL, 1996, p. 375.
Dickinson E., Euston S. R., Woskett C. M., Prod, Colloid Polym. Sci. 82, 65 1990.
Morrow N. M., Interfacial Phenomena in Petroleum Recovery, edited by N. M. Morrow, Dekker, New York, 1991, p. 1.
Qu X., Alvarez P.J.J., Li Q., Applications of nanotechnology in water and wastewater treatment, Water Res. 47, 2013, 3931-3946.
Amin M.T., Alazba A.A., Manzoor U., A review of removal of pollutants from water/wastewater using different types of nanomaterials, Adv. Mater. Sci. Eng. 2014, 24.
Martirosyan A., Schneider Y.-J., Engineered nanomaterials in food: implications for food safety and consumer health, Int. J. Environ. Res. Public Health 11, 2014, 5720-5750.
Garcia M., Forbe T., Gonzalez E., Potential applications of nanotechnology in the agro-food sector, Food Sci. Technol. 30, 2010, 573 – 581.
Chaudhry Q., Castle L., Food applications of nanotechnologies: an overview of opportunities and challenges for developing countries, Trends Food Sci. Technol. 22, 2011, 595–603.
Burgess R., Medical applications of nanoparticles and nanomaterials, Stud. Health Technol. Inform. 149, 2009, 257 – 283.
Salata O.V, Applications of nanoparticles in biology and medicine, J. Nanobiotechnol. 2, 2004, 3.
http://www. muhendislik.sdu.edu.tr/assets
Brusseau M.L., Popovičová J., Silva J.A.K.. Characterizing gas–water interfacial and bulk-water partitioning for gas-phase transport of organic contaminants in unsaturated porous media. Environ. Sci. Technol., 31, 1997, pp.1645-1649 doi: 10.1021/es960475j.
Chen L, Kibbey T.C.G.. Measurement of air–water interfacial area for multiple hysteretic drainage curves in an unsaturated fine sand. Langmuir ACS J. Surf. Colloids, 22, 2006, pp. 6874–6880 http://dx.doi.org/10.1021/la053521e.
Wildenschild D, Vaz C.M.P, Rivers M.L, Rikard D, Christensen B.S.B.. Using X-ray computed tomography in hydrology: systems, resolutions, and limitations. J. Hydrol., 267, 2002, pp. 285–297 http://dx.doi.org/10.1016/s0022-1694[02]00157-9
Brusseau M.L., Narter M., Schnaar G., J. Marble. Measurement and estimation of organic-liquid/water interfacial areas for several natural porous media. Environ. Sci. Technol., 43, 2009, pp. 3619–3625
Dalla E., Hilpert M., Miller C.T.. Computation of the interfacial area for two-fluid porous medium systems. J. Contam. Hydrol., 56, 2002, pp. 25-48 doi: 10.1016/s0169-7722(01)00202-9.
Kiani A., Bhave R.R., Sirkar K.K.. Solvent extraction with immobilized interfaces in a microporous hydrophobic membrane. J. Membr. Sci., 20, 1984, pp. 125–145, doi:10.1016/s0376-7388[00]81328-9.
Parhi P.K. Supported liquid membrane principle and its practices: a short review. J. Chem., 2013, 2012, http://dx.doi.org/10.1155/2013/618236 e618236
Soga K, Page J.W.E, Illangasekare T.H.. A review of NAPL source zone remediation efficiency and the mass flux approach. J. Hazard. Mater. 110, 2004, pp. 13–27 doi: 10.1016/j.jhazmat.2004.02.034.
Bai Y, Zhou J, Li Q. Stability analysis of the moving interface in piston- and non-piston-like displacements. Acta Mech. Sin., 24, 2008, pp. 381–385 doi:10.1007/s10409-008-0161-2.
Sugai Y, Babadagli T, Sasaki K. Consideration of an effect of interfacial area between oil and CO2 on oil swelling. J. Pet. Explor. Prod. Technol., 4, 2014, pp. 105–112 doi:10.1007/s13202-013-0085-7.
www.e-kutuphane.teb.org.tr/pdf/tebakademi/modern_farmasotk/15.pdf.
Madde Ölçümleri
Metrics powered by PLOS ALM
Refback'ler
- Şu halde refbacks yoktur.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Selçuk-Teknik Dergisi ISSN:1302-6178