TİROİD VE KRONİK BÖBREK HASTALIĞI VERİLERİNİN SINIFLANDIRILMASINDA GENETİK ALGORİTMALAR VE PCA İLE HİBRİT ÖZELLİK SEÇİMİ

Ayşe Nagehan MAT, Onur İNAN

Öz


TİROİD VE KRONİK BÖBREK HASTALIĞI VERİLERİNİN SINIFLANDIRILMASINDA GENETİK ALGORİTMALAR VE PCA İLE HİBRİT ÖZELLİK SEÇİMİ

Özet

Bu çalışmada tiroid ve kronik böbrek hastalığının teşhisinde k-nearest neighbors sınıflandırıcının performansını arttırmak amacıyla genetik algoritmalar ve temel bileşenler analizi (PCA) hibrit şekilde kullanılmış ve yeni bir özellik seçimi yöntemi önerilmiştir. Hibrit özellik seçimi yönteminde elde edilen uygulama sonuçları, veri setlerinin özellik seçimi uygulanmamış başlangıç performansıyla karşılaştırılmıştır. Sonuç olarak önerilen hibrit metotla birlikte sınıflandırma başarısı tiroid veri seti için %93.44’ten %95.89’a, böbrek veri seti için %93.75’ten %98.25’e çıkarılmıştır. Sonuçların tutarlı olması için her iki veri setine 10-kat çapraz doğrulama yapılmıştır.

Anahtar Kelimeler: Genetik Algoritmalar, PCA, Özellik Seçimi, K-nearest neighbors

HYBRID FEATURE SELECTION USING GENETIC ALGORITHMS AND PCA IN CLASSIFICATION OF THYROID AND CHRONIC KIDNEY DISEASE DATA

Abstract

In this study, genetic algorithms and principal component analysis (PCA) were used in a hybrid way to increase the performance of the k-nearest neighbors classifier in the diagnosis of thyroid and chronic kidney disease, and a new feature selection method was proposed. The application results obtained in the hybrid feature selection method were compared with the initial performance of the data sets before the feature selection was applied. As a result, with the proposed hybrid method, the classification success was increased from 93.44% to 95.89% for the thyroid data set and from 93.75%to 98.25%for the kidney data set. A 10-fold cross validation was applied to both data sets to ensure consistent results.

Keywords: Genetic Algorithms, PCA, Feature Selection, K-nearest neighbors


Anahtar Kelimeler


Genetik Algoritmalar, PCA, Özellik Seçimi, K-nearest neighbors

Tam Metin:

PDF

Referanslar


Zhang G, Berardi V. An investigation of neural networks in thyroid function diagnosis. Health Care Management Science 1998; 1.1: 29-37.

Ozyilmaz, L., Yildirim, T., 2002, Diagnosis of thyroid disease using artificial neural network methods. In Neural Information Processing, Proceedings of the 9th International Conference -ICONIP'02, 2033-2036.

Polat K, Şahan S, Güneş S. A novel hybrid method based on artificial immune recognition system (AIRS) with fuzzy weighted pre-processing for thyroid disease diagnosis. Expert Systems with Applications 2007; 32.4: 1141-1147.

Hoshi K, Kawakami J, Kumagai M, Kasahara S, Nishimura N, Nakamura H, Sato K. An analysis of thyroid function diagnosis using Bayesian-type and SOM-type neural networks. Chemical and pharmaceutical bulletin 2005; 53.12: 1570-1574.

Delen D, Walker G, Kadam A. Predicting breast cancer survivability: a comparison of three data mining methods. Artificial intelligence in medicine 2005; 34.2: 113-127.

Go A, Chertow G, Fan D, McCulloch C, Hsu C. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. New England Journal of Medicine 2004; 35.13: 1296-1305.

Topbaş E. Kronik Böbrek Hastalığının Önemi, Evreleri Ve Evrelere Özgü Bakımı, Nefroloji Hemşireliği Dergisi 2015; 53-59.

Jena L, Kamila K. Distributed Data Mining Classification Algorithms for Prediction of Chronic-Kidney-Disease, International Journal of Emerging Research in Management &Technology 2015; 93594: 2278–9359.

Kunwar, V., Chandel, K., Sabitha, A. S., Bansal, A., 2016, Chronic Kidney Disease analysis using data mining classification techniques, In IEEE 6th International Conference Cloud System and Big Data Engineering (Confluence), 300-305.

İlkuçar M. Kronik Böbrek Hastalarının Yapay Sinir Ağı ve Radyal Temelli Fonksiyon Ağı ile Teşhisi. Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi 2015; 6.2: 82-88.

Polat H, Mehr H, Cetin A. Diagnosis of Chronic Kidney Disease Based on Support Vector Machine by Feature Selection Methods, Journal of Medical Systems 2017; 41.4: 55.

Kumar M. Prediction of Chronic Kidney Disease Using Random Forest Machine Learning Algorithm Running Title: Prediction of Chronic Kidney Disease, International Journal of Computer Science and Mobile Computing 2016; 52522: 24–33.

Baby P, Vital P. Statistical Analysis and Predicting Kidney Diseases using Machine Learning Algorithms, International Journal of Engineering Research & Technology 2015; 407: 206–210.

Sinha P. Comparative study of chronic kidney disease prediction using KNN and SVM, International Journal of Engineering Research and Technology 2015; 4.12: 608-12.

Kılıçarslan S, Çelik M. (2019). Rotasyon orman sınıflandırma algoritması kullanarak kronik böbrek rahatsızlığının tahmini.

Ghaheri A, Shoar S, Naderan M, Hoseini S. The applications of genetic algorithms in medicine. Oman medical journal 2015; 30.6: 406.

Welikala R, Fraz M, Dehmeshki J, Hoppe A, Tah V, Mann S, Barman S. Genetic algorithm based feature selection combined with dual classification for the automated detection of proliferative diabetic retinopathy. Computerized Medical Imaging and Graphics 2015; 43: 64-77.

Khan A, Baig A. Multi-objective feature subset selection using non-dominated sorting genetic algorithm. Journal of applied research and technology 2015; 13.1: 145-159.

Xu L, Redman C, Payne S, Georgieva A. Feature selection using genetic algorithms for fetal heart rate analysis. Physiological measurement 2014; 35.7: 1357.

Singh D, Leavline E, Priyanka R, Priya P. Dimensionality reduction using genetic algorithm for improving accuracy in medical diagnosis. International Journal of Intelligent Systems and Applications 2016; 8.1: 67.

Erguzel T, Ozekes S, Tan O, Gultekin S. Feature selection and classification of electroencephalographic signals: an artificial neural network and genetic algorithm based approach. Clinical EEG and neuroscience 2015; 46.4: 321-326.

Cerrada M, Sánchez R, Cabrera D, Zurita G, Li C. Multi-stage feature selection by using genetic algorithms for fault diagnosis in gearboxes based on vibration signal. Sensors 2015; 15.9: 23903-23926.

Hsu W. Improving classification accuracy of motor imagery EEG using genetic feature selection. Clinical EEG and neuroscience 2014; 45.3: 163-168.

Çilli M, Arıtan S. Temel Bileşenler Analizi Yardımı İle Elde Edilen Daha Az Sayıda Değişken Kullanılarak Farklı Hızlarda İnsan Koşusunun Fourier Tabanlı Modelinin Oluşturulması. Spor Bilimleri Dergisi 2010; 21.1: 1-12.

Serpen, G., Jiang, H., Allred, L., 1997, Performance analysis of probabilistic potential function neural network classifier, In Proceedings of artificial neural networks in engineering conference, St. Louis-United States, 471-476.

Pasi, L., 2004, Similarity classifier applied to medical data sets, In International conference on soft computing- Fuzziness in Finland’04, Helsinki-Finland.

Keleş A, Keleş A. ESTDD: Expert system for thyroid diseases diagnosis. Expert Systems with Applications 2008; 34.1: 242-246.

Temurtas F. A comparative study on thyroid disease diagnosis using neural networks. Expert Systems with Applications 2009; 36.1: 944-949.

Dogantekin E, Dogantekin A, Avci D. An expert system based on Generalized Discriminant Analysis and Wavelet Support Vector Machine for diagnosis of thyroid diseases. Expert Systems with Applications 2011;, 38.1: 146-150.

Chen H, Yang B, Wang G, Liu J, Chen Y, Liu, D. A three-stage expert system based on support vector machines for thyroid disease diagnosis. Journal of medical systems 2012; 36.3: 1953-1963.

Li L, Ouyang J, Chen H, Liu D. A computer aided diagnosis system for thyroid disease using extreme learning machine. Journal of medical systems 2012; 36.5: 3327-3337.

Shen L, Chen H, Yu Z, Kang W, Zhang B, Li H, Liu D. Evolving support vector machines using fruit fly optimization for medical data classification. Knowledge-Based Systems 2016; 96: 61-75.

Inbarani H, Kumar S, Azar A, Hassanien A. Hybrid rough-bijective soft set classification system. Neural Computing and Applications 2018; 29.8: 67-78.

Chen Z, Zhang X, Zhang Z. Clinical risk assessment of patients with chronic kidney disease by using clinical data and multivariate models. International urology and nephrology 2016; 48.12: 2069-2075.

Polat H, Mehr H, Cetin A. Diagnosis of chronic kidney disease based on support vector machine by feature selection methods. Journal of medical systems 2017; 41.4: 55.

Zhang Z, Chen Z, Zhu R, Xiang, Y, Harrington P. Diagnosis of patients with chronic kidney disease by using two fuzzy classifiers. Chemometrics and Intelligent Laboratory Systems 2016; 153: 140-145.

Yıldız K, Çamurcu Y, Doğan, B. Veri madenciliğinde temel bileşenler analizi ve Negatifsiz matris çarpanlarına ayırma tekniklerinin karşılaştırmalı analizi. Akademik Bilişim 2010; 10-12.

Hilda, G. T., Rajalaxmi, R. R., 2015, Effective feature selection for supervised learning using genetic algorithm, 2nd International Conference In Electronics and Communication System-ICECS 2015, 909-914.

Baur B, Bozdag S. A Feature Selection Algorithm to Compute Gene Centric Methylation from Probe Level Methylation Data. PloS one 2016; 11.2: e0148977.

Kuang, Q., Zhao, L., 2009, A practical GPU based kNN algorithm. In Proceedings, The 2009 International Symposium on Computer Science and Computational Technology-ISCSCI 2009, Huangshan-China, 151.


Madde Ölçümleri

Ölçüm Çağırılıyor ...

Metrics powered by PLOS ALM

Refback'ler

  • Şu halde refbacks yoktur.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Selçuk-Teknik Dergisi  ISSN:1302-6178