AUTOMATIC BRAIN TUMOR SEGMENTATION WITH K-MEANS, FUZZY C-MEANS, SELF-ORGANIZING MAP AND OTSU METHODS

Rıfat ASLIYAN, İsmail ATBAKAN

Öz


AutomatIc BraIn Tumor SegmentatIon wIth K-Means, Fuzzy C-Means, Self-Organizing Map and Otsu Methods

Abstract

The human brain is an amazing organ of the human nervous system and controls all functions of our body. Brain tumors emerge from a mass of abnormal cells in the brain, and catching tumors early often allows for more treatment options. For diagnosing brain tumors, it has been benefited mostly from magnetic resonance images. In this study, we have developed the segmentation systems using the methods as K-Means, Fuzzy C-Means, Self-Organizing Map, Otsu, and the hybrid method of them, and evaluated the methods according to their success rates of segmentation. The developed systems, which take the brain image of MRI as input, perform skull stripping, preprocessing, and segmentation is performed using the clustering algorithms as K-Means, Fuzzy C-Means, Self-Organizing Map and Otsu Methods. Before preprocessing, the skull region is removed from the images in the MRI brain image data set. In preprocessing, the quality of the brain images is enhanced and the noise of the images is removed by some various filtering and morphological techniques. Finally, with the clustering and thresholding techniques, the tumor area of the brain is detected, and then the systems of the segmentation have been evaluated and compared with each other according to accuracy, true positive rate, and true negative rate.

Keywords: Brain Tumor Segmentation, Medical Imaging, Fuzzy C-Means, K-Means, Self-Organizing Map, Otsu Method

Bulanık C-Ortalamalar, K-Ortalamalar, Özdüzenlemelİ Ağ VE Otsu Metot İLE BEYİN TÜMÖRÜ SEGMENTASYONU

Özet

İnsan beyni, insan sinir sisteminin en önemli organıdır ve vücudumuzun tamamını kontrol eder. Beyin tümörleri beyindeki normal olmayan hücrelerden oluşur ve tümörleri erken tespit etmek birçok tedavi seçeneklerinin uygulanmasına olanak sağlar. Beyin tümörlerinin teşhisi için çoğunlukla manyetik rezonans görüntülerinden yararlanılmıştır. Bu çalışmada, Bulanık C-Ortalamalar, K-Ortalamalar, Özdüzenlemeli Ağ, Otsu Metot ve bu metotların birleşiminden oluşan hibrid metotlar kullanılarak beyin tümör segmentasyon sistemleri geliştirilmiştir. Bu metotların segmentasyon başarı oranları tespit edilmiş ve birbirleriyle karşılaştırılmıştır. Geliştirilen sistemlerde, ilk olarak MRI beyin görüntülerini girdi olarak alınır, sonra kafatası bölgesinin görüntüden ayrılması, önişleme ve Bulanık C-Ortalamalar, K-Ortalamalar, Özdüzenlemeli Ağ, Otsu metot gibi algoritmalarla segmentasyon işlemleri uygulanır. Önişlemden önce, kafatası bölgesi, MRI beyin görüntüsü veri setindeki görüntülerden çıkarılır. Ön işlemede, beyin görüntülerinin kalitesi iyileştirilir ve görüntülerin gürültüsü, çeşitli filtreleme ve morfolojik tekniklerle kaldırılır. Son olarak, kümeleme ve eşikleme teknikleri ile beynin tümör bölgesi tespit edildi. Daha sonra, segmentasyon sistemleri değerlendirildi ve doğruluk, gerçek pozitif oranı ve gerçek negatif oranına göre birbirleriyle karşılaştırıldı.

Anahtar Kelimeler: Beyin Tümörü Segmentasyonu, Tıbbi Görüntüleme, Bulanık C-Ortalamalar, K-Ortalamalar, Özdüzenlemeli Ağ, Otsu Metot


Anahtar Kelimeler


Brain Tumor Segmentation, Medical Imaging, Fuzzy C-Means, K-Means, Self-Organizing Map, Otsu Method

Tam Metin:

PDF (English)

Referanslar


Gooya A, Pohl KM, Bilello M, Cirillo L, Biros G. GLISTR: glioma image segmentation and registration, IEEE Trans. Med. Imaging, 2012; 31: 1941-1954.

Islam A, Reza SMS, Iftekharuddin KM. Multifractal texture estimation for detection and segmentation of brain tumors, IEEE Trans Biomed Eng, 2013; 60: 3204-3215.

Kwon, D., 2014, Combining generative models for multifocal glioma segmentation and registration, Medical Image Computing and ComputerAssisted Intervention, Heidelberg, Springer, 763-770.

Sing JK, Adhikari SK, Basu DK. A modified fuzzy C-means algorithm using scale control spatial information for MRI image segmentation in the presence of noise, Int J Imag Syst Technol, 2015; 29: 492-505.

Rao, V., Sharifi, M., Jaiswal, A., 2015, Brain tumor segmentation with deep learning”, MICCAI Multimodal Brain Tumor Segmentation Challenge, 56-59.

Pereira S, Pinto A, Alves V, Silva CA, Brain tumor segmentation using convolutional neural networks in MRI images, IEEE Trans Med Imag, 2016; 35: 1240-1251.

Prakash RM, Kumari RSS. Fuzzy C means integrated with spatial information and contrast enhancement for segmentation of MR brain images, Int J Imag Sys Techol., 2016; 26: 116-123.

Ali SM, Abood LK, Abdoon RS. Brain tumor extraction in MRI images using clustering and morphological operations techniques, Int J Geograph Inform Syst Appl Remote Sens, 2013; 4(1): 12-25.

Sharma, M., Mukharjee, S., 2013, Brain Tumor Segmentation using Genetic Algorithm and Artificial Neural Network Fuzzy Inference System ANFIS, Advances in Intelligent Systems and Computing, Springer, Berlin, Heidelberg, vol. 177, 329-339.

Kathirvel R, Batri K. Detection and diagnosis of meningioma brain tumor using ANFIS classifier, Imaging Syst Technol, 2017; 27: 187-192.

Zhang, J., Ma, K., Er, M., Chong, V ., 2004, Tumor segmentation from magnetic resonance imaging by learning via one-class support vector machine, Workshop on Advanced Image Technology, 207-211.

Ayachi, R., Amor, N., 2009, Brain tumor segmentation using support vector machines”, European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty, 736-747.

Tustison N, Shrinidhi KL, Wintermark M, Durst CR, et al. Optimal symmetric multimodal templates and concatenated random forests for supervised brain tumor segmentation (simplified) with ANTsr, Neuroinformatics, 2015; 13(2): 209-225.

Corso, J., Sharon, E., Yuille, A., 2006, Multilevel segmentation and integrated Bayesian model classification with an application to brain tumor segmentation, Medical Image Computing and Computer Assisted Intervention, 790-798.

Iftekharuddin K, Zheng J, Islam M, Ogg R. Fractal-based brain tumor detection in multimodal MRI, Appl. Math. Comput, 2009; 207: 23-41.

Prastawa M, Bullitt E, Sean H, Gerig G. A brain tumor segmentation framework based on outlier detection, Med. Image Anal., 2004; 8(3): 275-283.

Held K, Kops E, Krause B, Wells W, Kikinis R. Markov random field segmentation of brain MR images, IEEE Trans. Med. Imaging, 1997; 16(6): 878-886.

Batista, J., Kitney, R., 1995, Extraction of tumors from MR images of the brain by texture and clustering, Conference on Image Analysis and Processing, 235-240.

Wu, M., Lin, C., Chang, C., 2007, Brain tumor detection using color-based k-means clustering segmentation, Conference on Intelligent Information Hiding and Multimedia Signal Processing, 245-250.

Juang L, Wu M. MRI brain lesion image detection based on color-converted k-means clustering segmentation, Measurement, 2010; 43(7): 941-949.

Dharshini, R., Hemanandhini, S., 2016, Brain tumor segmentation based on Self Organising Map and Discrete Wavelet Transform, International Conference on Computer Communication and Informatics (ICCCI), Coimbatore, India.

Saraswathi, D., Priya, B.L., Lakshmi, R.P., 2019, Brain Tumor Segmentation and Classification using Self Organizing Map, International Conference on System, Computation, Automation and Networking (ICSCAN), Pondicherry, India.

Karaddi, S., Babu, P., Reddy, R., 2018, Detection of Brain Tumor Using Otsu-Region Based Method of Segmentation, International Conference on Computing Methodologies and Communication (ICCMC), 128-134.

AlAzawee WS. Computer-Aided Brain Tumor Edge Extraction Using Morphological Operations, MSc. Thesis, Western Michigan University, Kalamazoo, USA, 2015.

Cheng, J., 2017, Brain Tumor Dataset, figshare, Dataset. [Online]. https://figshare.com/articles/brain_tumor_dataset /1512427 [ Access Date: 11 .05. 2020].


Madde Ölçümleri

Ölçüm Çağırılıyor ...

Metrics powered by PLOS ALM

Refback'ler

  • Şu halde refbacks yoktur.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Selçuk-Teknik Dergisi  ISSN:1302-6178