PASSIVE AND ACTIVE CONTROL OF ACOUSTIC RESONANCE IN CAVITY FLOWS USING FFOWCS-WILLIAMS-HAWKINGS EQUATIONS

Ulku Ece AYLI

Öz


PASSIVE AND ACTIVE CONTROL OF ACOUSTIC RESONANCE IN CAVITY FLOWS USING FFOWCS-WILLIAMS-HAWKINGS EQUATIONS

Abstract

In the aerospace industry, interior storage carriages, that carry items such as weapons and bombs form cavities. The turbulence-cavity interaction causes significant vibration, sound pressure levels, resonance, and structural problems. Therefore, control methods are can be useful to reduce drag, minimize pressure fluctuations and SPL levels. This work studies the passive flow control methods to reduce the noise induced by the flow over the cavity. For this purpose, cavity leading, and trailing edge wall modifications were made such as inclination, placing a block upstream of the cavity, blowing from the cavity walls. Broadband nature of the noise sources is captured generally with DNS or LES approach. Large Eddy Simulations (LES) is used to compute the flow field to reduce computational cost.  ANSYS Fluent software is utilized to solve compressible, two-dimensional, transient subsonic cavity flow.  For the determination of sound pressure levels, Ffowcs-Williams–Hawkings (FW-H) integral method is used.

Keywords:  Passive and Active control, compressible flow, Ffowcs-Williams–Hawkings equations, CFD, Aeroacoustics

KAVİTE BÖLGELERİNDEKİ AKUSTİK REZONANS KONTROLÜ İÇİN AKTİF VE PASİF KONTROL METODLARININ FFOWCS-WILLIAMS-HAWKINGS DENKLEMLERİ YARDIMI İLE İNCELENMESİ

Özet

Havacılık endüstrisinde uçakların mühimmat depolayan bölümleri kavite olarak adlandırılmaktadır. Kavite bölgesinde, türbülans-kavite etkileşimi önemli ölçekte titreşime, yüksek ses basınç seviyelerine, rezonansa ve yapısal problemlere sebep olmaktadır. Bu sebeplerden ötürü, kavite bölgelerinde meydana gelen basınç salınımını minimize etmek, sürtünme kat sayısını ve ses basınç seviyelerini (SPL) düşürmek amacı ile kontrol metodları geliştirilmekttedir. Bu çalışmada, kavite giriş ve çıkış duvarlarında geometrik modifikasyonlar yaratarak pasif, kavite duvarlarından hava üflemesi yaparak ise aktif akış kontrol yöntemleri geliştirilmiştir.  Akış alanını çözümlemek için LES yaklaşımı kullanılmıştır. Sıkıştırılabilir, iki boyutlu,zamana bağlı değişen ve türbülanslı  kaviye akışı ANSYS Fluent programı kullanılarak modellenmiştir. Ses seviyelerinin belirlenmesi için ise Ffowcs-Williams–Hawkings (FW-H) integral metodu kullanılmıştır.

Anahtar Kelimeler: Pasif ve aktif kontrol, sıkıştırılabilir akış, Ffowcs-Williams–Hawkings (FW-H) denklemleri, HAD, aeroakustik


Anahtar Kelimeler


Passive and Active control, compressible flow, Ffowcs-Williams–Hawkings equations, CFD, Aeroacoustics

Tam Metin:

PDF (English)

Referanslar


Koçak, E., Ayli,E. Turkoglu, H., “Numerical Analysis of Aerodynamic and Aeroacoustics Characteristics of Subsonic Rectangular Cavity with Different Aspect Ratios”, 5th International Anatolian Energy Symposium,15-17 April 2020.

Meganathan, A.J., An Experimental Study of Low Speed Open Cavity Flows, MSc Thesis, Unıversity of Tennessee, Knoxville, 2000.

Tracy, M.B., Plentovich, B., Cavity Unsteady Pressure Measurements at Subsonic and Transonic Speeds, NASA Technical Paper 3669, Springfield, U.S.A., 1997

Block, P.J.W., Noise Response of Cavities of Varying Dimensions at Subsonic Speeds, NASA Technical Report, TN D-8351, U.S.A., 1976.

Ayli,E., Numerical Analysis of Supersonic cavity flow, MSc Thesis, TOBB ETU, 2012.

Casper, K.M., Wagner, J.L., Beresh, S.J., Henfling, J.F., Spillers, R.W., Pruett, O.M., “Complex Geometry Effects on Subsonic cavity Flows, 53rd AIAA Aerospace Sciences Meeting, Florida, 5-9 January 2015.

Shih, S.H., Hamed, A., Yeuan, J.J., Unsteady Supersonic Cavity Flow Simulations Using Coupled k-epsilon and Navier-Stokes Equations, AIAA Journal, 1994, 32(10), 2015-2021, 1994.

Kaufman, L.G., Maciulaitis A., Clark, R.L., Mach 0.6 To 3.0 Flows Over Rectangular Cavities, Air Force Wright Aeronautical Labs., AFWAL-TR-82-3112, New York, U.S.A., Kasım 1993.

Rizetta ,D.P., Visbal, M.R., Large Eddy Simulation of Supersonic Cavity Flowfields Including Flow Control, AIAA 41(8), 2003.

Bres, G.A., Colonius, T., Direct Numerical Simulations of Three Dimensional Cavity Flows, Journal of Fluid Mechanics: 599, 309-339, Cambridge, UK, Mart 2008.

Chung, K.M., Characteristics of Compressible Rectangular Cavity Flows, Journal of Aircraft, 37(3), 463-468, 2000.

Heller, H., Holmes, H., Covert, E.E., Flow Induced Pressure Oscillations in Shallow Cavities, Journal of Sound and Vibration, 1970,18(4), 545-545.

Saddingtoni, A., Thangamani, T., Knowles,K., Comparison of Passive Flow Control Methods For a Cavity in Transonic Flow, Journal of Aircraft, 2016.

Gupta, A.D., Roy, S., Noise control of subsonic cavity flows using passive receptive channels, 53rd AIAA Science Meetings, 2015.

Meganathan, A.J., An Experimental Study of Low Speed Open Cavity Flows, MSc Thesis, Unıversity of Tennessee, Knoxville, 2000.

Ligthill, M. J “On Sound Generated Aerodynamically,” Proc. Roy. Soc. London Ser., Vol. 211(1107), 1952, 564-587,

Yenigelen, E., Aeroacoustic Analysis of open cavities with rounded edges, MSc Thesis, Istanbul Techical University, 2015.

Ffowcs Williams, J. E. and Hawkings, D. L. “Sound Generation by Turbulence and Surfaces in Arbitrary Motion,” Philos. Trans. Roy.Soc., A264, 1969., 231-342.

Curle, N. “The Influence of Solid Boundaries Upon Aerodynamic Sound,” Proc. Roy. Soc. London Ser., A 231, 1955, 505-514.


Madde Ölçümleri

Ölçüm Çağırılıyor ...

Metrics powered by PLOS ALM

Refback'ler

  • Şu halde refbacks yoktur.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Selçuk-Teknik Dergisi  ISSN:1302-6178