3 VE 5 KROMLU ÇELİKLERDE TANTALYUM VE KROM İLAVESİNİN MİKROYAPIYA VE ÇENTİK DARBE DİRENCİNE ETKİSİ

Gökhan ARICI, Mustafa ACARER, Mesut UYANER

Öz


3 VE 5 KROMLU ÇELİKLERDE TANTALYUM VE KROM İLAVESİNİN MİKROYAPIYA VE ÇENTİK DARBE DİRENCİNE ETKİSİ

Özet

Krom molibden (tungsten) [Cr-Mo (W)] çelikleri yüksek sıcaklık ve basınçlı buharın geçtiği petrokimya endüstrisindeki, enerji santrallerindeki vb. kullanılan borularda tercih edilmektedir. Bu şartlarda gerekli mukavemetin sağlanması çelikteki alaşım elementlerine bağlıdır. Alaşım elementlerinin kompozisyonlarının değişmesi çeliğin mikroyapısal ve mekanik özelliklerini değiştirmektedir. Bu çalışmada, daha önce üretimi yapılan Cr-Mo (Cr-W) çeliklerine alternatif olabilecek, ağırlıkça % 3, % 5 Cr ve % 3 W ana alaşım elementlerini içeren düşük Cr’lu çelikler döküm yolu ile üretilip sıcak olarak haddelenmiştir. Bu çalışmada farklı oranlarda Cr ve Ta içeren çeliklerin mikroyapıları ve çentik darbe dirençleri incelenmiştir. 3 Cr’lu alaşımlarda mikroyapıda ferrit ve beynit gözlemlenirken, 5 Cr’lu alaşımlarda mikroyapıda beynit ve martenzit gözlemlenmiştir. Ayrıca, Cr ve Ta ilaveleri alaşımların sünekliklerinde azalmaya sebep olmuştur.

Anahtar Kelimeler: Cr-W Çelikleri, Çentik Darbe Direnci, Tantalyum, Krom

THE EFFECT OF TANTALUM AND CHROMIUM ADDITION ON MICROSTRUCTURE AND NOTCH IMPACT STRENGTH IN 3 AND 5 CHROMIUM STEELS

Abstract

Chromium molybdenum (tungsten) (Cr-Mo (W)) steels are widely used for the high pressure and temperature use in pipes in petrochemical industry and power plants. Providing the required strength under these conditions depends on the composition of the steel. The change in the ratio of alloying elements changes the microstructural and mechanical properties of steel. In this study, low chromium steels containing 3% and 5% Cr and 3% W as major alloying elements, which may be alternative to Cr-Mo (Cr-W) steels currently being produced, were produced by casting and hot rolled. In this study, microstructure and the notch toughness of steels which contain different amounts of Cr and Ta were investigated. The results showed that 3 Cr steels have a microstructure consist of bainite and ferrite, whereas 5 Cr steels have a microstructure consist of bainite and martensite. The addition of Cr and Ta cause a decrease in ductility of the alloys.

Keywords: Cr-W Steels, Notch Toughness, Tantalum, Chromium


Anahtar Kelimeler


Cr-W Çelikleri, Çentik Darbe Direnci, Tantalyum, Krom

Tam Metin:

PDF

Referanslar


Klueh RL. Elevated temperature ferritic and martensitic steels and their application to future nuclear reactors. International Materials Reviews. 2005;50:287-310.

Acarer M, Arıcı G, Acar FK, Keskinkilic S, Kabakci F. Toughness of 2, 25Cr-1Mo steel and weld metal. AIP Conference Proceedings: AIP Publishing; 2017. p. 090003.

Klueh RL, Maziasz PJ. The Microstructure of Chromium-Tungsten Steels. Metallurgical Transactions a-Physical Metallurgy and Materials Science. 1989;20:373-82.

Klueh RL, Maziasz PJ, Alexander DJ. A comparison of low-chromium and high-chromium reduced-activation steels for fusion applications. Oak Ridge National Lab., TN (United States); 1996.

Jayakumar T, Mathew M, Laha K. High temperature materials for nuclear fast fission and fusion reactors and advanced fossil power plants. Procedia Engineering. 2013;55:259-70.

Wang L. Development of Predictive Formulae for the A1 Temperature in Creep Strength Enhanced Ferritic Steels: The Ohio State University; 2010.

Klueh RL, Alexander DJ, Maziasz PJ. Bainitic chromium-tungsten steels with 3 pct chromium. Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science. 1997;28:335-45.

Arıcı G. Düşük Kromlu Çeliklerde Kobalt Miktarının Mikroyapıya ve Tokluğa Etkisi [PhD]: Selçuk Üniversitesi; 2019.

Yan W, Wang W, Shan YY, Yang K. Microstructural stability of 9–12%Cr ferrite/martensite heat-resistant steels. Frontiers of Materials Science. 2013;7:1-27.

Mori T, Tokizane M, Okamoto K. The Effect of Niobium and Tantalum on Grain Size of Steel. Tetsu-to-Hagane. 1969;55:485-96.

Totten GE. Steel heat treatment: Metallurgy and Technologies: CRC Press; 2006.

Bhadeshia HKDH. Martensite and bainite in steels: transformation mechanism & mechanical properties. Le Journal de Physique IV. 1997;7:C5-367-C5-76.

Grange R. Estimating the hardenability of carbon steels. Metallurgical Transactions. 1973;4:2231-44.

Mae Y. Correlation of the Effects of Alloying Elements on the Hardenability of Steels to the Diffusion Coefficients of Elements in Fe. International Journal of Materials Science and Applications. 2017;6:200.

Raghavan V. Physical metallurgy: principles and practice: PHI Learning Pvt. Ltd.; 2015.

Bhadeshia HKDH. Mechanical Properties of Martensite in Heat-resistant Steels. Proceedings of Ultra-Steel. 2000.

Yan W, Wang W, Shan Y, Yang K, Sha W. 9-12Cr Heat-Resistant Steels, 2015.


Madde Ölçümleri

Ölçüm Çağırılıyor ...

Metrics powered by PLOS ALM

Refback'ler

  • Şu halde refbacks yoktur.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Selçuk-Teknik Dergisi  ISSN:1302-6178