DOKU MÜHENDİSLİĞİNDE YAPAY KEMİK İSKELESİ TASARIMI
Öz
DOKU MÜHENDİSLİĞİNDE YAPAY KEMİK İSKELESİ TASARIMI
Özet
Hasarlı kemik yapılarının onarımı için farklı uygulamalar gerçekleştirilse de günümüzde daha çok kemiğin yeniden üretim yöntemlerine odaklanılmıştır. Bu nedenle doku mühendisliği alanında son yıllarda yürütülen çalışmalar yapay kemik iskelesi tasarımı ve üretimi üzerine yoğunlaşmaktadır. Yapay kemik iskelesi üretiminde yüksek gözeneklilik oranı, gözenekler arası bağlar, kullanılan malzemenin dayanımı ve biyouyumlu olması önemli hususlar arasındadır. Doku mühendisliği çalışmalarında kimyasal gaz köpürtme, membran laminasyon, kalıplama, partikül süzme gibi geleneksel yaklaşımlarla yapay kemik üretimi yöntemleri halen yaygın olarak kullanılsa da eklemeli imalat yaklaşımlarının kullanımı giderek yaygınlaşmaktadır. Günümüzde hızlı prototipleme teknolojileri ile karmaşık geometrideki yüksek gözenekli kemik iskelesi yapıları, tek işlem basamağında kolaylıkla üretilebilmekte, gözenek sayısı ve boyutlarının kontrolü hassas bir şekilde yapılabilmektedir. Bu çalışmada, doku mühendisliğinde yapay kemik iskelesi tasarım ve üretimi süreçlerinde kullanılan klasik ve yeni nesil yapay kemik iskelesi tasarım yaklaşımları incelenmiştir. Çalışmada, üç boyutlu (3B) baskı teknolojileri ile baskı alınmasında kemik iskelesini oluşturan hücresel birimlerin ve kemik iskele yapılarının oluşturulmasında kullanılan yöntemler ele alınmıştır.
Anahtar Kelimeler: Doku mühendisliği, Yapay kemik iskelesi, 3B baskı
ARTIFICIAL BONE SCAFFOLD DESIGN IN TISSUE ENGINEERINGAbstract
Although different applications have been carried out for the repair of damaged bone structures, nowadays mostly focus on bone regeneration methods. Therefore, recent studies in the field of tissue engineering focus on artificial bone scaffolding design and production. High porosity rate, inter-pore bonding, strength and biocompatibility of materials used in artificial scaffold production are among the important issues. Although traditional methods such as chemical gas foaming, membrane lamination, molding, particle leaching and artificial bone production methods are still widely used in tissue engineering studies, the use of additive manufacturing approaches is becoming widespread. Nowadays, high-porous bone scaffolding structures of complex geometry can be produced easily in a single process step and precise control of pore number and dimensions can be made with rapid prototyping technologies. In this study, classical and new generation artificial bone scaffold design approaches used in tissue engineering in artificial bone scaffolding design and production processes are examined. In this study, the methods used to construct the cellular units and bone scaffold structures forming the bone scaffold for printing with three dimensional (3D) printing technologies are discussed.
Keywords; Tissue engineering, Artificial bone scaffold, 3D printing
Anahtar Kelimeler
Tam Metin:
PDFReferanslar
Leppke, S., Leighton, T., Zaun, D., Chen, S. C., Skeans, M., Israni, A. K., Snyder, J. J., Kasiske, B. L. Scientific Registry of Transplant Recipients: Collecting, analyzing and reporting data on transplantation in the United States, Transplantation Reviews 2013; 27(2): 50–56.
Langer, R., Vacanti, J. P. Tissue Engineering, Science 1993; 260(5110): 920–926.
Martin, I., Wendt, D., Heberer, M. The role of bioreactors in tissue engineering, Trends in Biotechnology 2004; 22(2): 80-86.
Hutmacher, D. W. Scaffold in tissue engineering bone and cartilage, Biomaterials 2000; 21(24): 2529–2543.
Wang, Wenhao, and Kelvin WK Yeung. Bone grafts and biomaterials substitutes for bone defect repair: A review, Bioactive Materials 2017; 2(4): 224-247.
Wang, Hongjun, and Clemens A. van Blitterswijk. The role of three-dimensional polymeric scaffold configuration on the uniformity of connective tissue formation by adipose stromal cells, Biomaterials 2010; 31(15): 4322-4329.
Eltom, Abdalla, Gaoyan Zhong, and Ameen Muhammad. Scaffold Techniques and Designs in Tissue Engineering Functions and Purposes: A Review, Advances in Materials Science and Engineering 2019.
O’Brien, F. J. Biomaterials & scaffolds for tissue engineering, Materials Today 2011; 14(3): 88-95.
Mark E. Furth, Anthony Atala, in Principles of Tissue Engineering (Fourth Edition); 2014.
Jaklenec, Ana, et al. Progress in the tissue engineering and stem cell industry “are we there yet, Tissue Engineering Part B: Reviews 2012; 18(3): 155-166.
Bandyopadhyay, A., Bose, S. Characterization of Biomaterials (First Edition), Elsevier Inc., 1,2; 2013.
Mourino, V., Boccaccini, A. R. Bone tissue engineering therapeutics: controlled drug delivery in three-dimensional scaffolds, Journal of The Royal Society Interface 2010; 7(43): 209–227.
Alford, A. I., Kozloff, K. M., Hankenson, K. D. Extracellular matrix networks in bone remodeling, The International Journal of Biochemistry & Cell Biology 2015; 65(1): 20-31.
Seitz, H., Rieder, W., Irsen, S., Leukers, B., Tille, C. Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering, Journal of Biomedical Materials Research Part B Applied Biomaterials 2005; 74(2): 782-788.
Jones, A. C., Arns, C. H., Sheppard, A. P., Hutmacher, D. W., Milthorpe, B. K., Knackstedt, M. A. Assessment of bone ingrowth into porous biomaterials using MICRO-CT, Biomaterials 2007; 28(15): 2491-2504.
Rezwan, K., Chen, Q. Z., Blaker, J.J., Boccaccini, A. R. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering, Biomaterials 2006; 27(18): 3413-3431.
Müller, B., Deyhle, H., Fierz, F., Irsen, S., Yoon, J., Mushkolaj, S., Boss, O., Vondran, E., Gbureck, U., Degistrici, Ö. Bio-mimetic hollow scaffolds for long bone replacement, Proceedings of SPIE - The International Society for Optical Engineering 2009; 7401.
Seitz, H., Rieder, W., Irsen, S., Leukers, B., Tille, C. Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering, Journal of Biomedical Materials Research Part B Applied Biomaterials 2005; 74(2): 782-788.
Rezwan, K., Chen, Q. Z., Blaker, J.J., Boccaccini, A. R. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering, Biomaterials 2006; 27(18): 3413-3431.
Salgado, A. J., Coutinho, O. P., Reis, R. L. Bone tissue engineering: state of the art and future trends, Macromolecular Science 2004; 4(8): 743-765.
Griffith, L. G., & Naughton, G. Tissue engineering--current challenges and expanding opportunities, Science 2002; 295(5557): 1009-1014.
Loh Q. L., Choong, C. Three-dimensional scaffolds for tissue engineering applications: Role of porosity and pore size, Tissue Engineering Part B Reviews 2013; 19(6): 485–502.
Guo, Y., Liu, K., Yu, Z. Tetrahedron-Based Porous Scaffold Design for 3D Printing, Designs 2019; 3(16): 1-17.
Cao, H., Kuboyama, N. A biodegradable porous composite scaffold of PGA/β-TCP for bone tissue engineering, Bone 2010; 46 (2): 386–395.
Yoshikawa, H., Tamai, N., Murase, T., Myoui, A. Interconnected porous hydroxyapatite ceramics for bone tissue engineering. The Royal Society Interface 2009; 6(3): 341-348.
Moroni, Lorenzo, J. R. De Wijn, and C. A. Van Blitterswijk. 3D fiber-deposited scaffolds for tissue engineering: influence of pores geometry and architecture on dynamic mechanical properties, Biomaterials 2006; 27(7): 974-985.
O’Brien, F. J. Biomaterials & scaffolds for tissue engineering, Materials Today 2011; 14(3): 88-95.
Babensee, J. E., Anderson, J. M., Mclntire, L. V., Mikos, A. G. Host response to tissue engineered devices, Advanced Drug Delivery Reviews 1998; 33(1-2): 111-139
Declercq, Heidi A., et al. The role of scaffold architecture and composition on the bone formation by adipose-derived stem cells, Tissue Engineering Part A 2013; 20(1-2): 434-444.
Chan, B. P., and K. W. Leong. Scaffolding in tissue engineering: general approaches and tissue-specific considerations, European spine journal 2008; 17(4): 467-479.
Partap, S., Lyons, F., O'Brien, F. J. Scaffolds & Surfaces. In: Basic Engineering for Medics and Biologists, An ESEM Primer on Engineering for Medicine, Lee, T. C., Niederer, P. (Eds.), IOS Press, Nieuwe Hemweg; 2010. 152, 187.
Hollister, S. J. Porous scaffold design for tissue engineering, Nature Materials 2005; 4(7): 518–524
Cheah, C. M., Chua, C. K., Leong, K. F., Chua, S. W. Development of a tissue engineering scaffold structure library for rapid prototyping. Part 1: Investigation and classification, The International Journal of Advanced Manufacturing Technology 2003a; 21(4): 291-301.
Cheah, C. M., Chua, C. K., Leong, K. F., Chua, S. W. Development of a tissue engineering scaffold structure library for rapid prototyping. Part 2: Parametric library and assembly program, The International Journal of Advanced Manufacturing Technology 2003b; 21(4): 302-312.
Cheah, C. M., Chua, C. K., Leong, K. F., Chua, S. W., Naing, M. W. Automatic algorithm for generating complex polyhedral scaffold structures for tissue engineering, Tissue Engineering 2004; 10(3-4): 595-610.
Giannitelli, S. M., Accoto, D., Trombetta, M., Rainer, A. Current trends in the design of scaffolds for computer-aided tissue engineering, Acta Biomaterialia 2014; 10(2): 580-594.
Liebschner, M. A. K. Computer-Aided Tissue Engineering, Humana Press. Springer Science+Business Media LLC, 233 Spring Street, New York, NY 10013, USA; 2012.
Hutmacher, D. W., Sittinger, M., Risbud, M. V. Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems, Trends Biotechnology 2004; 22(7): 354-362.
Sun, W., Starly, B., Darling, A., Gomez, C. Computer-aided tissue engineering: application to biomimetic modelling and design of tissue scaffolds, Biotechnology and Applied Biochemistry 2004; 39(1): 49-58.
Liebschner, M. A., Müller, R., Wimalawansa, S. J., Rajapakse, C. S., & Gunaratne, G. H. Testing two predictions for fracture load using computer models of trabecular bone, Biophysical journal 2005; 89(2): 759-767.
Chantarapanich, N., Puttawibul, P., Sucharitpwatskul, S., Jeamwatthanachai, P., Inglam, S., Sitthiseripratip, K. Scaffold library for tissue engineering: a geometric evaluation, Computational Mathematical Methods in Medicine, 2012; 40785.
Sudarmadji, Novella, Chee Kai Chua, and Kah Fai Leong. "The development of computer-aided system for tissue scaffolds (CASTS) system for functionally graded tissue-engineering scaffolds." Computer-Aided Tissue Engineering. Humana Press, Totowa, NJ, 2012; 111-123.
Naing, M. W., Chua, C. K., Leong, K. F., Wang, Y. Fabrication of customised scaffolds using computer-aided design and rapid prototyping techniques, Rapid Prototyping Journal 2005; 11(4): 249-29.
Nam, J., Starly, B., Darling, A., Sun, W. Computer aided tissue engineering for modeling and design of novel tissue scaffolds, Computer-Aided Design Applications, 2004; 633-640.
Bucklen, B. S., Wettergreen, W. A., Yuksel, E., Liebschner, M. A. K. Bone-derived CAD library for assembly of scaffolds in computer-aided tissue engineering, Virtual and Physical. Prototyping 2008; 3(1): 13-23.
Sun, W., Starly, B., Nam, J., Darling, A. Bio-CAD modeling and its applications in computer-aided tissue engineering. Computer-Aided Design 2005; 37(1): 1097-1114.
Murr, L. E., Gaytan, S. M., Medina, F., Lopez, H., Martinez, E., MacHado, B. I., Hernandez, D. H., Martinez, L., Lopez, M. I., Wicker, R. B., Bracke, J. Next-generation biomedical implants using additive manufacturing of complex cellular and functional mesh arrays. Philosophical Transactions of The Royal Society A 2010; 368(1), 1999-2032.
Sudarmadji, N., Tan, J. Y., Leong, K. F., Chua, C. K., Loh, Y. T. Investigation of the mechanical properties and porosity relationships in selective laser-sintered polyhedral for functionally graded scaffolds. Acta Biomaterialia 2011; 7(2): 530-537.
Hollister, S. J., Levy, R. A., Chu, T. M., Halloran, J. W., Feinberg, S. E. An image-based approach for designing and manufacturing craniofacial scaffolds. International Journal of Oral Maxillofacial Surgery 2000; 29(1): 67-71.
Smith, M H., Flanagan, C. L., Kemppainen, J. M., Sack, J. A., Chung, H., Das, S., Hollister, S. J., Feinberg, S. E. Computed tomography-based tissue-engineered scaffolds in craniomaxillofacial surgery. The International Journal of Medical Robotics Computer Assisted Surgery 2007; 3(3): 207-216.
Hollister, S. J., Maddox, R. D., Taboas, J. M. Optimal design and fabrication of scaffolds to mimic tissue properties and satisfy biological constraints, Biomaterials 2002; 23(20): 4095-4103.
McGurk, M., Amis, A. A., Potamianos P, Goodger, N. M. Rapid prototyping techniques for anatomical modelling in medicine. Annals Royal College Surgeons England 1997; 79 (3): 169-174.
Berry, E., Brown, J. M., Connell, M. Craven, C. M., Efford, N. D., Radjenovicİ A., Smith, M. A. Preliminary experience with medical applications of rapid prototyping by selective laser sintering. Medical Engineering and Physics 1997; 19 (1): 90-96.
Pasko, A., Fryazinov, O., Vilbrandt, T., Fayolle, P. A., Adzhiev, V. Procedural function-based modelling of volumetric microstructures. Graphical Models 2011; 73(5): 165-181.
Kapfer, S. C., Hyde, S. T., Mecke, K., Arns, C. H., Schröder-Turk, G. E. Minimal surface scaffold designs for tissue engineering, Biomaterials 2011; 32(29): 6875-6882.
Ambu, R., Morabito, A. E. Porous Scaffold Design Based on Minimal Surfaces: Development and Assessment of Variable Architectures, Symmetry 2018; 10(9): 361.
Feng, J., Fu, J., Shang, C., Lin, Z., Li, B. Porous scaffold design by solid T-splines and triply periodic minimal surfaces. Computer Methods in Applied Mechanics and Engineering 2018; 336 (1): 333-352.
Leong, K. F., Chua, C. K., Sudarmadji, N., Yeong, W. Y. Engineering functionally graded tissue engineering scaffolds, Journal of the Mechanical Behavior of Biomedical Materials 2008; 1(2): 140-152.
Chua, C. K., Leong, K. F., Sudarmadji, N., Liu, M. J. J., Chou, S. M. Selective laser sintering of functionally graded tissue scaffolds. MRS Bulletin 2011; 36(12): 1006-1014.
Cai, S., Xi, J., Chua, C. K. A novel bone scaffold design approach based on shape function and all-hexahedral mesh refinement, Computer-Aided Tissue Engineering 2012; 868(1): 45-55.
Rouwkema, J., Rivron, N. C., van Blitterswijk, C. A. Vascularization in tissue engineering, Trends in Biotechnology 2008; 26(8): 434-441.
Druecke, D., Langer, S., Lamme, E., Pieper, J., Ugarkovic, M., Steinau, H. U., Homann, H. H. Neovascularization of poly(ether ester) block-copolymer scaffolds in vivo: Long-term investigations using intravital fluorescent microscopy, Journal of Biomedical Material Research Part A 2004; 68A(1): 10-18.
In Vitro ve In Vivo Arasındaki Fark. Bilim ve Doğa. [Online] https://tr.betweenmates.com/difference-between-in-vitro-and-in-vivo-6187, [Erişim Tarihi: 01.09.2019.
Yaşar, S., & Aydın, C. Endodontide doku mühendisliği. Turkiye Klinikleri Journal of Dental Sciences Special Topics 2010; 1(3): 58-65.
Madde Ölçümleri
Metrics powered by PLOS ALM
Refback'ler
- Şu halde refbacks yoktur.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Selçuk-Teknik Dergisi ISSN:1302-6178