EKLEMELİ İMALAT İÇİN TOPOLOJİ OPTİMİZASYONU: EL FRENİ MEKANİZMASI UYGULAMASI

Neslihan TOP, Harun GÖKÇE, İsmail ŞAHİN

Öz


EKLEMELİ İMALAT İÇİN TOPOLOJİ OPTİMİZASYONU: EL FRENİ MEKANİZMASI UYGULAMASI

Özet

Üretimi gerçekleştirilecek bir tasarımı, çok fonksiyonlu, mukavemeti yüksek ve hafif bir hale dönüştürmek tüm tasarımcı ve mühendislerin beklentisidir. Topoloji optimizasyonu, bu doğrultuda uygulanan optimizasyon tekniklerinden biridir. Topoloji optimizasyonu ile karmaşık geometriye sahip, kafesli yapıdaki parçaların elde edilmesi mümkündür. Yeni tasarlanan veya mevcutta var olan bir katı model üzerine kısıtlamalar getirilerek, kuvvet uygulanır. Optimizasyon işleminin tamamlanmasından sonra malzeme dağılımı optimize edilmiş, hafif ve çok fonksiyonlu ürünler elde edilebilir. Ancak karmaşık yapıdaki bu parçaların geleneksel imalat yöntemleri ile üretimi imkansızdır. Model üzerinde bir takım değişiklikler yapılması gerekir ve bu durum tasarımcılarının özgürlüğünü kısıtlar. Günümüzde kullanımı giderek artan eklemeli imalat teknolojileri ile karmaşık geometrideki parçalar tek işlem basamağında üretilebilmektedir. Bu teknolojilerin kullanımı, topoloji optimizasyonu sonucu elde edilen parçaların üretimini mümkün kılar. Bu çalışma kapsamında, fren braketinin topoloji optimizasyonu gerçekleştirilerek ideal forma ulaşması ve malzeme dağılımının düzenlemesiyle hafiflemesi sağlanmıştır. İşlem sonrası elde edilen parçanın eklemeli imalat yöntemlerinden biri olan Selective Laser Sintering (SLS) yöntemi ile destek parça kullanılmadan, modelin tamamlanmasından sonra ekstra bir işleme gerek olmaksızın üretimi planlanmıştır.

Anahtar Kelimeler: Yapısal optimizasyon, Topoloji optimizasyonu, Eklemeli imalat teknolojileri, Seçici lazer sinterleme (SLS).

TOPOLOGY OPTMIZATION FOR ADDITIVE MANUFACTURING: AN APPLICATION ON HANDBRAKE MECHANISM

Abstract

It is in the expectation of all designers and engineers to turn a design that will be produced, multifunctional, with high strength and light weight. Topology optimization is one of the optimization techniques applied in this direction. With topology optimization, it is possible to obtain parts with complex geometries and lattice structures. The force is applied by imposing restrictions on a newly designed or existing solid model. After the optimization process is completed, the material distribution is optimized, light and multifunctional products can be obtained. However, it is impossible to produce these complex parts with conventional manufacturing methods. A number of modifications have to be made to the model and this restricts the freedom of designers. With the increasing use of additive manufacturing technologies, parts in complex geometry can be produced in a single process step. The use of these technologies makes it possible to produce parts obtained as a result of topology optimization. Within the scope of this study, it was ensured that the handbrake bracket was optimized with topology optimization and reached the ideal form and the material distribution was alleviated. Selective Laser Sintering (SLS) method, which is one of the additive manufacturing methods of the part obtained after the process, is planned to be produced without any additional parts after the completion of the model.

Keywords; Structural optimization, Topology optimization, Additive manufacturing technologies, Selective laser sintering (SLS).


Anahtar Kelimeler


Yapısal optimizasyon, Topoloji optimizasyonu, Eklemeli imalat teknolojileri, Seçici lazer sinterleme (SLS)

Tam Metin:

PDF

Referanslar


Liu S, Li Q, Junhuan Liu, Chen W, Zhang Y. A Realization Method for Transforming a Topology Optimization Design into Additive Manufacturing Structures, Engineering 2018; 4: 277-285.

Christensen P, Anders K. An Introduction to Structural Optimization, Springer 2008; ISBN 978-1-4020-8665-6.

Thummar, D R. Truss Topology Optimization Using Modified Genetic Algorithm, Master of Technology in Machine Design, Department of Mechanical Engineering School of Engineering, RK University, Rajkot, Gujarat-360020, 2014.

Nadir W, Kim Y, Weck O L. “Structural Shape Optimization Considering Both Performance and Manufacturing Cost” American Institute of Aeronautics and Astronautics.

Saleem W, Yuqing F, Yunqiao W. Application of Topology Optimization and Manufacturing Simulations - A new trend in design of Aircraft components, Engineers and Computer Scientists 2008; volume II, Hong Kong.

Zhu J H, Zhang W H, Xia L. Topology optimization in aircraft and aerospace structures design, Arch. Comput. Methods Eng. 2016; 23: 595–622.

Luh GC, Lin CY, Lin YS. “A binary particle swarm optimization for continuum structural topology optimization” Applied Soft Computing 11, Elsevier Science, 2011; pp. 2833-2844

Top, N., Şahin, İ., Gökçe, H., 2018, 3B Yazıcı Teknolojisi için Topoloji Optimizasyonu: Otomotivde Salıncak Kolu Üzerine bir Çalışma, Third International Symposium on Industrial Design & Engineering (ISIDE), 2018.

Şahin, İ., 2018, Mühimmat Sistemlerinde Kullanılan Askı Kancalarında Geometri Tabanlı Topoloji Optimizasyonu, Third International Symposium on Industrial Design & Engineering (ISIDE), 2018.

Hands, C H, Plessis A, Minnaar N, Blakey-Milner B A, Burger E. Can Additive Manufacturing Help Win the Race?, Preprints; 2018.

Chuang C H, Chen S, Yang R J, Vogiatzis P. Topology optimization with additive manufacturing consideration for vehicle load path development, Internat. J. Numer. Methods Engrg. 2017.

Cheng K T, Olhoff N. An investigation concerning optimal design of solid elastic plate, Int. J. Solids Struct 1981; 17: 305–323.

Bendsøe M P, Kikuchi N. Generating optimal topologies in structural design using a homogenization method, Comput. Methods Appl. Mech. Engrg. 1988; 71: 197–224.

Rozvany G I N. A critical review of established methods of structural topology optimization, Struct. Multidiscip. Optim. 2009; 37: 217–237.

Cheng L, Liu J, Liang X, Albert C. To. Coupling lattice structure topology optimization with design-dependent feature evolution for additive manufactured heat conduction design, Comput. Methods Appl. Mech. Engrg. 2018; 332: 408–439.

Liu S, Li Q, Chen W, Tong L, Cheng G. An identification method for enclosed voids restriction in manufacturability design for additive manufacturing structures, Front Mech Eng 2015;10(2):126–37.

Li Q, Chen W, Liu S, Tong L. Structural topology optimization considering connectivity constraint, Struct Multidiscip Optim 2016; 54(4): 971–84.

Wang K, Ho CC, Zhang C, Wang B. A review on the 3D printing of functional structures for medical phantoms and regenerated tissue and organ applications, Engineering 2017; 3(5): 653–62.

Brackett D, Ashcroft I, Hague R, 2011, Topology Optimization For Additive Manufacturing, in SFF Symposium 2011, Austin, TX.

Brackett D, Ashcroft I, Hague R, 2011. Topology optimization for additive manufacturing, 22nd Annual Solid Freeform Fabrication Symposium (2011) 348–362.

Deckard C. Method and apparatus for producing parts by selective sintering, US Patent 1989; 4:863,538.

Partee B, Hollister S J, Das S. Selective Laser Sintering Process Optimization for Layered Manufacturing of CAPA® 6501 Polycaprolactone Bone Tissue Engineering Scaffolds, Journal of Manufacturing Science and Engineering(ASME) 2006; 128: 531-540.

Laumer T, Wudy K, Drexler M, Amend P, Roth S, Drummer D, Schmidt M. Fundamental investigation of laser beam melting of polymers for additive manufacture. J. Laser Appl. 2014; 26: 042003. http://dx.doi.org/10.2351/1.4892848.

Gibson I, Rosen D, Stucker B. Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing. ISBN 978-1-4939-2113-3 (eBook).

Kruth J P, Wang X, Laoui T, Froyen L. Lasers and materials in selective laser sintering, Assem. Autom. 2003; 23: (4) 357–371.

Akande S O, Dalgarno K W, Munguia J, Pallari J. Assessment of test for use in process and quality control systems for selective laser sintering of polyamide powders, J. Mater. Process. Technol. 2016; 229: 549–561.

Deckard C. Method and apparatus for producing parts by selective sintering, U.S. Patent 1989; 4: 863–538.

Çelik İ, Karakoç F, Çakır M C, Duysak A. Hızlı Prototipleme Teknolojileri ve Uygulama Alanları, Dumlupınar Üniversitesi Fen Bilimleri Enstitüsü Dergisi 2013; 31: ISSN – 1302 – 3055.


Madde Ölçümleri

Ölçüm Çağırılıyor ...

Metrics powered by PLOS ALM

Refback'ler

  • Şu halde refbacks yoktur.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Selçuk-Teknik Dergisi  ISSN:1302-6178