THE EFFECT OF EMBEDDING LENGTH AND CONCRETE COVER THICKNESS ON BOND STRENGTH IN BASALT AGGREGATE CONCRETE
Öz
THE EFFECT OF EMBEDDING LENGTH AND CONCRETE COVER THICKNESS ON BOND STRENGTH IN BASALT AGGREGATE CONCRETE
Abstract
This study investigated the effect of concrete cover thickness and embedding length on bond strength in concretes depending on the bonding properties of basalt aggregate in cement matrix. B420C construction steel with a diameter of 12 mm was centrally embedded in concrete samples for bond tests. CEM I 42.5 R cement and basalt aggregate were used for the production of concrete samples. 'Lollipop’-shaped reinforced concrete samples were prepared to make sure that concrete cover thickness is equal in the reinforcement circumference for the bond tests. These samples were prepared in nine different sizes with three different diameters and at three different height/diameter ratios. The results show that embedding depths of reinforcements in the samples with a diameter of 50 mm have no significant effect on bond strength. It has, therefore, been determined that the cylinder diameter of the concrete should be greater than 50 mm.
Keywords: Bond, pull-out, concrete cover thickness, embedding length.
BAZALT AGREGALI BETONDA KENETLENME BOYUNUN VE BETON ÖRTÜ KALINLIĞININ ADERANS GERİLMESİNE ETKİSİ
Özet
Bu çalışmada çimento matrisi içerisinde bazalt agregasının yapışma özelliğine bağlı olarak aderans dayanımına beton örtü kalınlığının ve kenetlenme boyunun etkisi araştırılmıştır. Aderans deneyleri için beton örneklerine 12 mm çapında B420C tipi inşaat çeliği merkezi olarak gömülmüştür. Beton örneklerin üretimi için CEM I 42.5 R tipi çimento ve bazalt agregası kullanılmıştır. Aderans testlerinde beton örtü kalınlığının betonarme ortamda eşit olması için Lolipop şekilli beton örnekleri hazırlanmıştır. Bu örneklerde; üç farklı çapta ve üç farklı narinlik (boy/çap) oranlarında olmak üzere dokuz farklı boyutta hazırlanmıştır. Sonuç olarak 50 mm çaplı örneklerde donatıların gömülme derinliklerinin aderans gerilmelerinde kayda değer bir değişikliğe neden olmamalarından ötürü beton silindir çapının 50 mm üzerinde olması gerektiği belirlenmiştir.
Anahtar Kelimeler: Aderans, pull-out, beton örtü kalınlığı, kenetlenme boyu.
Anahtar Kelimeler
Tam Metin:
PDF (English)Referanslar
Tanyıldızı H, Yazıcıoğlu S. Betonarme demiri ve beton arasındaki aderans dayanımına kür koşullarının etkisi. Doğu Anadolu Bölgesi Araştırmaları 2006; 11-14
Xu S, Li A, Wang H. Bond properties for deformed steel bar in frost-damaged concrete under monotonic and reversed cyclic loading. Construction and Building Materials 2017; 148: 344-358
Lin H, Zhao Y, Ozbolt J, Hans-Wolf R. The bond behavior between concrete and corroded steel bar under repeated loading. Engineering Structures 2017; 140: 390-405
Bilek V, Bonczkova S, Hurta J, Pytlik D, Mrovec M. Bond Strength Between Reinforcing Steel and Different Types of Concrete. Procedia Engineering 2017; 190: 243-247
Mousavi SS, Dehestani M, Mousavi KK. Bond strength and development length of steel bar in unconfined self-consolidating concrete. Engineering Structures 2017; 131: 587-598
Douba A, Genedy M, Matteo EN, Kandil UF, Stormont J, Reda Taha MM. The significance of nanoparticles on bond strength of polymer concrete to steel. International Journal of Adhesion and Adhesives 2017; 74: 77-85
Kumar P, Chaudhary S, Gupta R. Behaviour of Adhesive Bonded and Mechanically Connected Steel-concrete Composite under Impact Loading. Procedia Engineering 2017; 173: 447-454
Ismael R, Silva JV, Carmo RNF, Soldado E, Lourenço C, Costa H, Julio E. Influence of nano-SiO2 and nano-Al2O3 additions on steel-to-concrete bonding. Construction and Building Materials 2016; 125: 1080–1092
Song X, Wu Y, Gu X, Cehn C. Bond behaviour of reinforcing steel bars in early age concrete. Construction and Building Materials 2015; 94: 209–217
Valcuende M, Parra C. Bond behaviour of reinforcement in self-compacting concretes. Construction and Building Materials 2009; 23: 162–170
Aydın Ö. Investigation of measures for the prevention of corrosionof steel in concrete structures. T.C. Yıldız Teknik University. Department of Metallurgical and Materials Engineering. Phd. Thesis. İstanbul - TURKEY, 2012
Al-Shannag M J, Charif A. Bond behavior of steel bars embedded in concretes made with natural lightweight aggregates. Journal of King Saud University - Engineering Sciences. Available online 6 June 2017, In Press, https://doi.org/10.1016/j.jksues.2017.05.002
Beycioğlu A, Aruntaş Y. Bazalt lifli donatının yüksek dayanımlı betondaki aderans performansı. Journal of Engineering and Technological Sciences 2014/1: 83-96
Sancak E, Şimşek O, Apay AC. A comparative study on the bond erformance between rebar and structural lightweight pumice concrete with/without admixture. International Journal of the Physical Sciences 2011; 6(14): 3437–3454
Hossain KMA. Bond characteristics of plain and deformed bars in lightweight pumice concrete. Constr Build Mater. 2008; 22: 1491–1499
Akman Pek N. Beton deniz yapılarında basalt agrega kullanımı. İMO Teknik Dergi 2014: 6849-6866
Ercenk E, Bayrak G, Şen U, Yılmaz Ş. Bazalt Esaslı Cam ve Cam-Seramik Kaplamaların Mekanik Özellikleri. AKU J. Sci. Eng. 2014; 14 OZ5703: 17-24
Yıldız S, Işık N, Keleştemur O. Diyarbakır-Karacadağ Bazalt Taşlarının Mekanik Özelliklerinin İncelenmesi. Science and Eng. J of Fırat Univ. 2008; 20 (4): 617-626
Kahveci AE, Kadayıfçı A. Diyarbakir yöresi bazalt taşinin yapisal özelliklerinin incelenmesi. SDU International Technologic Science 2013; 5(3): 56-69
Dybel P, Furtak K. Influence of silica fume content on the quality of bond conditions in high-performance concrete specimens. Archives of Civil and Mechanical Engineering 2017; 17: 795-805
Castel A, Foster SJ. Bond strength between blended slag and Class F fly ash geopolymer concrete with steel reinforcement. Cement and Concrete Research 2015; 72: 48-53
Butler L, West JS, Tighe SL. The effect of recycled concrete aggregate properties on the bond strength between RCA concrete and steel reinforcement. Cement and Concrete Research 2011; 41 (10); 1037-1049
Hanjari KZ, Utgenannt P, Lundgren K. Experimental study of the material and bond properties of frost-damaged concrete. Cement and Concrete Research 2011; 41 (3): 244-254
Kim SW, Yun HD. Evaluation of the bond behavior of steel reinforcing bars in recycled fine aggregate concrete. Cement and Concrete Composites 2014; 46: 8–18
Durmuş A, Arslan ME, Öztürk HT. Eğilmede Hafif Beton-Donatı Aderansının İncelenmesi. http://www.imo.org.tr/resimler/ekutuphane/pdf/3145.pdf, 06.06.2017.
Dybeł P, Furtak K. Influence of silica fume content on the quality of bond conditions in high-performance concrete specimens. Archives of Civil and Mechanical Engineering 2017; 17 (4): 795–805
Moallemi Pour S, Shahria Alam M. Investigation of Compressive Bond Behavior of Steel Rebar Embedded in Concrete With Partial Recycled Aggregate Replacement. Structures 2016; 7: 153-164
Garcia-Taengua E, Martí-Vargas JR, Serna P. Bond of reinforcing bars to steel fiber reinforced concrete. Construction and Building Materials 2016; 105: 275-284
TS 825. 2008. Binalarda ısı yalıtım kuralları (Thermal insulation requirements for buildings). TSE. Ankara-Turkey
TS EN 12390-3. 2010. Beton - Sertleşmiş beton deneyleri - Bölüm 3: Deney numunelerinin basınç dayanımının tayini (Testing hardened concrete - Part 3: Compressive strength of test specimens). TSE. Ankara- Turkey
Kürklü G, Başpınar MS, Ergün A. A comparative study on bond of different grade reinforcing steels in concrete under accelerated corrosion. Steel and Composite Structures 2013; 14 (3): 229-242.
Ersoy U, Özcebe G. Betonarme. Evrim Yayınevi (in TURKEY). 2016. ISBN: 9789755032337.
Madde Ölçümleri
Metrics powered by PLOS ALM
Refback'ler
- Şu halde refbacks yoktur.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Selçuk-Teknik Dergisi ISSN:1302-6178