REAL TIME PCA BASED FACE RECOGNITION FOR FOLLOWING STAFF
Öz
REAL TIME PCA BASED FACE RECOGNITION FOR FOLLOWING STAFF
Abstract
With the development of technology, security has entered our lives as an indispensable element. Nowadays, people are now using some methods that increase safety in every system. Biometrics technologies used in the identification of the physical properties of the body (facial, fingerprint and fingerprint) have become a common security detection approach today. Different methods are used for biometric applications. In this study, an application was developed by using PCA (Principal Component Analysis) method in the literature using face recognition algorithm. In this application, a workplace with hundreds of employees is followed by face recognition of the arrival and departure of the staff. After the follow-up, the persons who are late to the job or who are early to the desired time are reported to the management mail.
Keywords: Biometry, Image processing, Facial identification, PCA, Personnel tracking.
PERSONEL TAKİBİ İÇİN GERÇEK ZAMANLI PCA TABANLI YÜZ TANIMA
ÖzetTeknolojinin gelişmesiyle ile birlikte güvenlik vazgeçilmez bir unsur olarak hayatımıza girmiştir. Günümüzde insanlar artık her türlü sistemde güvenliği artıran bazı yöntemler kullanılmaktadır. Kişinin fiziksel özelliklerinin (yüz, parmak izi vs.) kimlik tespitinde kullanılan biyometri teknolojileri, günümüzde oldukça sık karşılaşılan güvenlik tespit yaklaşımı olmuştur. Biyometrik uygulamalar için değişik yöntemler kullanılmaktadır. Bu çalışmada litaretürde bulunan PCA(Principal Component Analysis) yöntemi ile yüz tanıma algoritması kullanılarak bir uygulama geliştirilmiştir. Bu uygulamada yüzlerce personeli olan bir işyerinde personelin işe geliş ve gidişinin yüz tanıma ile takibi yapılmaktadır. Takip sonrasında işe istenilen zamandan geç gelen veya istenilen zamandan erken çıkan kişiler yönetime mail olarak bildirilmektedir.
Anahtar Kelimeler: Biyometri, Görüntü işleme, Yüz tanımlama, PCA, Personel takip.
Anahtar Kelimeler
Tam Metin:
PDF (English)Referanslar
Chellappa R.,Wilson C., Sirohey S. Human andmachine recognition of faces: A survey, In Proc.IEEE 1995; 83: 705–740.
Sirovich L, Kirby M. Low-Dimensional Procedure for the Characterization of Human Faces, Journal of the Optical Society of America A 1987; 4: 519-524.
Kirby M, Sirovich L. Application of the Karhunen-Loeve Procedure for the Characterization of Human Faces, IEEE Transactions on Pattern Analysis and Machine Intelligence 1990; 12: 103-108.
Turk M, Pentland A. Eigenfaces for Recognition, Journal of Cognitive Neuroscience 1991; 3:71-86.
Pentland A, Moghaddam B, Starner T. Viewbased and modular eigenspaces for face recognition, In Proceedings of Computer Vision and Pattern Recognition 1994; 84–91.
Belhumeur P, Hespanha J, Kriegman D. Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection, IEEE Transactions on Pattern Analysis and Machine Intelligence 1997; 19: 711-720.
Zhao W, Chellappa R, Nandhakumarm N. Empirical performance analysis of linear discriminant classfiers, In Proceedings of Computer Vision and Pattern Recognition 1998;164–169.
Shen L, Bai L. A review on Gabor wavelets for face recognition, Pattern Anal. Appl. 2006; 9:273-292.
Eleyan A, Özkaramanli H, Demirel H. Complex Wavelet Transform-Based Face Recognition. EURASIP Journal on Advances in Signal Processing;2008: 13 pages.
Hafed Z. M, Levine M. D. Face Recognition Using the Discrete Cosine Transform, International Journal of Computer Vision 2001;43: 167-188.
Wiskott L, Fellous J, Krüger N, Malsburg V. Face Recognition by Elastic Brunch Graph Matching, IEEE Transactions on Pattern Analysis and Machine Intelligence 1997;19: 775-779.
Brunelli R, Poggio T. Face recognition: Features versus Templates. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1993;15: 1042-1052.
Blanz V, Vetter T. A Morphable Model Fort He Synthesis Of 3D Faces, Max-Planck- Institut für biologische Kybernetik, Germany 2011.
Ekenel H.K., Sankur B. Multi resolution Face Recognition, Image and Vision Computing; 2005. pp. 469-477.
Huang L.L, Shimizu A., Kobatake H. Robust Face Detection Using Gabor Filter Features, Pattern Recognition Letters. 2005;26: 1641-1649.
Viola P, Jones M.J. Robust Real-Time Face Detection, International Journal of Computer Vision. 2004; 57(2): 137–154.
Demiröz B. E. «Temel Bileşenler Analizi (PCA) çıkarımı,». Available at: http://www.anlak.com/temel-bilesenler-analizi-pca-cikarimi/. [Accessed Date:15.10.2016].
Temel Bileşenler Analizine Genel Bir Bakış. Available at: www.zafercomert.com. [Accessed Date:7.11.2016].
Madde Ölçümleri
Metrics powered by PLOS ALM
Refback'ler
- Şu halde refbacks yoktur.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Selçuk-Teknik Dergisi ISSN:1302-6178