A DFT STUDY ON MOLECULAR STRUCTURE AND POSSIBLE CONFORMERS OF TARTARIC ACID

Yavuz EKİNCİOĞLU, HAMDİ Şükür KILIÇ, Ömer DERELİ

Öz


A DFT STUDY ON MOLECULAR STRUCTURE AND POSSIBLE CONFORMERS OF TARTARIC ACID

Abstract

In order to determine molecular structure, a conformational analysis of tartaric acid was performed and eight stable conformers were determined. The conformational space of the tartaric acid was scanned using molecular mechanic calculations performed by courtesy of the Spartan08 program.  In addition, the most stable structure of tartaric acid that has the lowest energy structure is determined.  Geometry optimizations were performed with Becke’s three-parameter hybrid-exchange functional combined with the Lee–Yang–Parr correlation functional (B3LYP) method and the standard 6-311++G (d,p) basis set.  The calculated molecular geometry parameters, HOMO-LUMO energies, molecular electrostatic potentials (MEPs) and some thermodynamic parameters were also given for further studies. All these calculations carried out by using Gaussian03W package program.

Keywords: DFT, Conformational Analysis, Tartaric Acid, Molecular Thermodynamics

 TARTARİK ASİTİN MOLEKÜLER YAPİSİ VE OLASİ KONFERMERLERİ HAKKİNDA DFT ÇALİŞMASİ

Özet

Tartarik asitin moleküler yapısını belirlemek için konformasyon analizi uygulanmış ve sekiz kararlı konformere sahip olduğu belirlenmiştir.  Tararik asitin konformasyonel uzayı Spartan08 programıyla moleküler mekanik hesaplama ile taranmıştır. Ayrıca, tartarik asit molekülünün en düşük enerjili kararlı yapısı belirlenmiştir. Lee-Yang-Parr korelasyon fonksiyonelli 3 parametreli Becke karma modeli (B3LYP) ve 6-311++G(d,p) baz seti kullanılarak geometri optimizasyonları gerçekleştirilmiştir. Hesaplanan moleküler geometri parametreleri, HOMO-LUMO enerjileri, moleküler elektrostatik potansiyel (MEPs) ve bazı termodinamik parametreler de ileri çalışmalar için verilmiştir. Tüm hesaplamalar Gaussian03W paket programı kullanılarak gerçekleştirilmiştir.

Anahtar Kelimeler: DFT, Konformasyon Analizi, Tartarik Asit, Moleküler Termodinamik


Anahtar Kelimeler


DFT, Konformasyon Analizi, Tartarik Asit, Moleküler Termodinamik

Tam Metin:

PDF (English)

Referanslar


Ruffner, H. P. "Metabolism of tartaric and malic acids in Vitis: a review. B." Vitis (1982).

Higginson, E. G., et al. "A high‐throughput UHPLC MS/MS method for evaluation of tartaric and malic acid concentration in individual grapevine berries." Australian Journal of Grape and Wine Research 22.1 (2016): 16-23.

Kontogiannopoulos KN, Patsios SI, Karabelas AJ. Tartaric acid recovery from winery lees using cation exchange resin: Optimization by Response Surface Methodology. Separation and Purification Technology. 2016; 165:32-41.

Berger RG. Flavours and fragrances: chemistry, bioprocessing and sustainability: Springer Science & Business Media; 2007.

Stern Ft, Beevers C. The crystal structure of tartaric acid. Acta Crystallographica. 1950; 3 (5):341-6.

Okaya Y, Stemple Nt, Kay M. Refinement of the structure of D-tartaric acid by X-ray and neutron diffraction. Acta Crystallographica. 1966; 21 (2):237-43.

Polavarapu P, Ewig C, Chandramouly T. Conformations of tartaric acid and its esters. Journal of the American Chemical Society. 1987; 109 (24):7382-6.

Barron L, Gargaro A, Hecht L, Polavarapu P, Sugeta H. Experimental and ab initio theoretical vibrational Raman optical activity of tartaric acid. Spectrochimica Acta Part A: Molecular Spectroscopy. 1992; 48 (8):1051-66.

Drozd M, Marchewka M. The structure, vibrational spectra and nonlinear optical properties of the l-lysine× tartaric acid complex—Theoretical studies. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2006; 64 (1):6-23.

Sarıkaya, E. Karakaş, and Ö. Dereli. "Study on molecular structure and vibrational spectra of 5, 7-dimethoxycoumarin using DFT: A combined experimental and quantum chemical approach." Optics and Spectroscopy117.2 (2014): 240-249.

Gökce, H., & Bahçeli, S. (2010). Analysis of molecular structure and vibrational spectra of 1 (2H)-phthalazinone. Journal of Molecular Structure, 967(1), 42-46.

Gökce, H., & Bahçeli, S. (2011). Quantum chemical computations of 1, 3-phenylenediacetic acid. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 78(2), 803-808.

Gökce, H., & Bahçeli, S. (2011). Analysis of molecular structure and vibrational spectra of 2-(2′-thienyl) pyridine. Journal of Molecular Structure, 1005(1), 100-106.

Tanak, H., Koçak, F., & Ağar, E. (2016). A combined experimental (XRD, FT-IR, and UV–Vis) and DFT computational studies on (E)-N-[4-bromo-2-(trifluromethoxy) phenyl]-1-(5-nitrothiophen-2-yl) methanimine. Molecular Physics, 114(2), 197-212.

Tanak, H. (2014). Molecular structure, spectroscopic (FT-IR and UV-Vis) and DFT quantum-chemical studies on 2-[(2, 4-Dimethylphenyl) iminomethyl]-6-methylphenol. Molecular Physics, 112(11), 1553-1565.Y. Erdogdu, Spectrochim. Acta Part A 106 (2013) 25e33.

Erdogdu, Y. (2013). Investigations of FT-IR, FT-Raman, FT-NMR spectra and quantum chemical computations of Esculetin molecule. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 106, 25-33.

Erdogdu, Y., Eskioǧlu, B., & Güllüoǧlu, M. T. (2012). Theoretical investigations on the molecular structure and vibrational spectral analysis of 4-methyl 2-phenylimidazole. Optics and Spectroscopy, 113(6), 596-606.

Erdogdu, Y., Drozd, M., & Marchewka, M. K. (2012). Structural, calorimetric and vibrational investigations of 2, 3 and 4-hydroxyanilinium perchlorate: A theoretical and experimental study. Vibrational Spectroscopy, 58, 169-180.

Spartan 08, Wavefunction Inc., Irvine, CA 92612, USA, 2008.

Gaussian 03, Revision E.01, M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria,M.A. Robb, J.R. Cheeseman, J.A. Montgomery, Jr., T. Vreven, K.N. Kudin, J.C.Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G.Scalmani, N. Rega,G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R.Fukuda, J. asegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M.Klene, X. Li, J.E. Knox, H. P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R.Gomperts, R.E. Stratmann, O. Yazyev,A.J. Austin, R. Cammi, C. Pomelli, J.W.Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G.Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D.Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S.Clifford, J. ioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi,R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M.Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A.Pople, Gaussian, Inc., Pittsburgh, PA, 2003.

Gökce, H., & Bahçeli, S. (2013). FT-IR, Micro-Raman and UV–vis spectroscopic and quantum chemical investigations of free 2, 2′-dithiodipyridine and its metal (Co, Cu and Zn) halide complexes. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 114, 61-73.K. Fukui, Science 218 (4574) (1982) 747–754.

Fukui, K. (1982). The role of frontier orbitals in chemical reactions (Nobel Lecture). Angewandte Chemie International Edition in English, 21(11), 801-809.


Madde Ölçümleri

Ölçüm Çağırılıyor ...

Metrics powered by PLOS ALM

Refback'ler

  • Şu halde refbacks yoktur.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Selçuk-Teknik Dergisi  ISSN:1302-6178