YENİ BİR PULS LASER DEPOZİSYON (PLD) SİSTEMİ TASARIMI, ÜRETİMİ VE UYGULAMALARI
Öz
YENİ BİR PULS LASER DEPOZİSYON (PLD) SİSTEMİ
TASARIMI, ÜRETİMİ VE UYGULAMALARI
Özet
Puls laser depozisyon (PLD) tekniği, ince film ve çok tabakalı yapılar üretmek için oldukça basit ve çok yönlü-esnek bir sistemdir. PLD sistemi kullanılarak, malzeme yapay olarak ince bir tabaka haline getirilmektedir. İnce tabaka haline getirilen malzemenin özellikleri tabaka kalınlıklarına bağlı olarak değişmektedir. İnce film üretiminde, ablasyonla elde edilen demetin özellikleri, film yapısı ve mekanik özellikleri arasındaki ilişki oldukça önemlidir. PLD tekniği kullanılarak ince film üretiminde, ince film özelliklerinin laser güç yoğunluğu, dalgaboyu, numune ve alt tabaka sıcaklıkları ve sistem geometrisine oldukça bağlı olduğu çok iyi bilinmektedir. Oldukça üstün özlellikleri nedeniyle PLD tekniği ince film üretiminde oldukça yaygın bir şekilde kullanılmaktadır. PLD, özellikle erime ve buharlaşma noktası çok yüksek olan, ısıl yöntemlerle buharlaştırılması çok zor olan metalik malzemelerin buharlaştırılmasında etkin bir şekilde kullanılmaktadır. Bor, renyum, tantalyum, titanyum gibi erime ve buharlaşma noktaları çok yüksek olan malzemelerin bu metodla işlenmesi oldukça üstün özellikler ortaya koymaktadır. Bu çerçevede aşırı sert ince tabakaların üretimi oldukça önem kazanmaktadır. Bu nedenle bu tür malzemelerin PLD yöntemi ile işlenmesi, özellikle Puls Laser Ablasyon ve Depozisyon (PLAD) yöntemi ile ince film üretiminde oldukça başarılı sonuçlar vermektedir. Bu çalışmada, grubumuz tarafından üretilem PLD sisteminin detayları ile tanıtılmasının yanı sıra elde edilen bazı önemli sonuçları ortaya konacaktır.
Anahtar Kelimeler: Puls Laser Depozisyon, PLD, İnce Film, Reaktif PLD
A NEW PULSED LASER DEPOSITION (PLD) SYSTEM
DESIGN, PRODUCTION AND APPLICATIONS
Abstract
Pulsed laser deposition (PLD) is simple and highly versatile tool for thin-film and multilayer production. By using PLD, materials have been artificially transformed into thin layers. The materials properties are changed by their thickness when they transformed into layered structure. In thin film deposition, the relationship between plume properties, film structure and mechanical characteristics are very important. In the thin film production using PLD technique, it is well known that the thin film charascteristics are strongly depended on the cumulative influence of the laser power density (fluence), wavelength, temperatures of target sample and substrate and geometry of the sistem. PLD technique has been widely used in thin film preparation because of its excellent properties. PLD technique has been effectively used for the metalic materials whose melting and evoperation points are high and evoperation of them are quite difficult to process by thermal processes. The materials having high melting and evoperation points such as boron, rhenium, tantalum, titanium gain superior properties when it is processed by PLD. In this point of view, the production of ultra hard material surfaces become very impotant task. In this case, PLD processing of these kind of materials, especially Pulse Laser Ablation and Deposition (PLAD) technique has introduced very successful results in the production of the thin film. In this work, some important results will be introduced as well as introduction of PLD system produced by our group.
Keywords: Pulsed Laser Deposition, PLD, Thin Film, Reactive PLD
Anahtar Kelimeler
Tam Metin:
PDFReferanslar
Eason R. Pulsed laser deposition of thin films: applications-led growth of functional materials. John Wiley & Sons. 2007.
Perrière J, Millon, E., Fogarassy,E., . Recent Advances In Laser Processing Of Materials. Elsevier. 2006.
Bäuerle D. Laser Processing and Chemistry. Springer. 1996.
Guido D, Cultrera L, Perrone A. The pulsed laser ablation deposition technique: a new deposition configuration for the synthesis of uniform films. Surface and Coatings Technology. 2004;180-181:603-6.
Geusic JE, Marcos HM, Van Uitert LG. Laser Oscillations In Nd-Doped Yttrium Aluminum, Yttrium Gallium And Gadolinium Garnets. Applied Physics Letters. 1964;4:182.
Zhang Y, Gu H, Iijima S. Single-wall carbon nanotubes synthesized by laser ablation in a nitrogen atmosphere. Applied Physics Letters. 1998;73:3827.
Geohegan DB, Puretzky AA, Rader DJ. Gas-phase nanoparticle formation and transport during pulsed laser deposition of Y[sub 1]Ba[sub 2]Cu[sub 3]O[sub 7−d]. Applied Physics Letters. 1999;74:3788.
Goodwin TJ, Leppert, V.L., Risbud, S.H., Kennedy, I.M., Lee, H.W.H. Applied Physics Letters 1997;7:3122-4.
Zheng R, Campbell, M., Ledingham, K. W. D., Jia, W., Scott, C. T. J., & Singhal, R. P. Diagnostic study of laser ablated YBaeCu3Oy plumes. Spectrochimica Acta Part B: Atomic Spectroscopy. 1997;52:339-52.
Milaen M, Laserna JJ. Diagnostics of silicon plasmas produced by visible nanosecond laser ablation. Spectrochim Acta B. 2001;56:275-88.
Cervelli F, Fuso F, Allegrini M, Arimondo E. In situ diagnostics of pulsed laser ablation through atomic oxygen absorption spectroscopy. Applied Surface Science. 1998;127:679-85.
Allegrini M, Fuso F, Lorenzi G, Vyacheslavov LN, Arimondo E. Spectroscopy as in-situ diagnostics for pulsed laser deposition of superconductive and ferroelectric thin films. Applied Surface Science. 1996;106:438-46.
Acquaviva S, Fernandez M, Leggieri G, Luches A, Martino M, Perrone A. Pulsed laser ablation deposition of thin films on large substrates. Appl Phys a-Mater. 1999;69:S471-S4.
Greer JA, Tabat MD, Lu C. Future trends for large-area pulsed laser deposition. Nucl Instrum Meth B. 1997;121:357-62.
Acquaviva S, Perrone A, Zocco A, Klini A, Fotakis C. Deposition of carbon nitride films by reactive sub-picosecond pulsed laser ablation. Thin Solid Films. 2000;373:266-72.
Vlad VI, Luculescu CR, Sato S, Fenic CG. The effect of deposition parameters on the boron nitride films grown on Si(100) by PLD with nanosecond pulses. In ROMOPTO 2003: Seventh Conference on Optics International Society for Optics and Photonics. 2004:409-17.
Chae H, Park SM. Mass spectroscopic studies on the laser ablation of boron nitride. Applied Surface Science. 1998;127:304-8.
Mitu B, Bilkova P, Marotta V, Orlando S, Santagata A. RF plasma reactive pulsed laser deposition of boron nitride thin films. Applied Surface Science. 2005;247:123-7.
Friedmann TA, McCarty KF, Klaus EJ, Boehme D, Clift WM, Johnsen HA, et al. Cubic boron nitride formation on Si (100) substrates at room temperature by pulsed laser deposition. Applied Physics Letters. 1992;61:2406.
Qian F, Nagabushnam V, Singh RK. Pulsed laser deposition of cubic boron nitride films on silicon substrates. Applied Physics Letters. 1993;63:317.
Reisse G, Weissmantel S. Pulsed laser deposition of hexagonal and cubic boron nitride films. Appl Phys a-Mater. 1999;69:S749-S53.
Mirkarimi PB, McCarty KF, Medlin DL. Review of advances in cubic boron nitride film synthesis. Mat Sci Eng R. 1997;21:47-100.
Guseva MB, Babaev, V. G., Guden, V. S., Khvostov, V. V., Bregadze, A. U., & Konyashin, I. . Deposition of cubic boron nitride by laser ablation. Diam Relat Mater. 2001;10:1385-9.
Weissmantel S, Reisse G, Keiper B, Weber A, Falke U, Roder M. Pulsed laser deposition and modification of cubic boron nitride films. Applied Surface Science. 1998;127:444-50.
Reisse G, Weissmantel S, Keiper B, Weber A. Properties of pulsed laser deposited boron nitride films. Applied surface science. 1997;108:9-15.
Miyake H, Luculescu, C., and Sato, S. . Thin film deposition of boron nitride by femtosecond laser pulses with different wavelengths. Jpn J Appl Phys 1. 2002;41:7506.
Takeda M, Ichimura M, Yamaguchi H, Sakairi Y, Kimura K. Preparation of Boron–Silicon Thin Film by Pulsed Laser Deposition and Its Properties. Journal of Solid State Chemistry. 2000;154:141-4.
Wang Z, Shimizu Y, Sasaki T, Kirihara K, Kawaguchi K, Kimura K, et al. Fabrication of crystallized boron films by laser ablation. Journal of Solid State Chemistry. 2004;177:1639-45.
Suda Y, Suganuma Y, Sakai Y, Suzuki K, Tsujino J, Homma N. Preparation of double layer film of boron and carbon by pulsed laser deposition. Applied Surface Science. 2002;197:603-6.
Pronko PP, VanRompay, P. A., Zhang, Z., Nees, J. A. . Isotope enrichment in laser-ablation plumes and commensurately deposited thin films. Physical Review Letters. 1999;83:2596.
Cheng HF, Chuang FY, Tsai CH, Wang WC, Huang CM, Lin IN. Boron-doping effect on the field emission behavior of pulse laser deposited diamond-like carbon films. Applied Surface Science. 1999;142:504-9.
Voevodin AA, Donley MS, Zabinski JS. Pulsed Laser deposition of diamond-like carbon wear protective coatings: A review. Surf Coat Tech. 1997;92:42-9.
Gaze J, Oyanagi N, Yamamoto I, Izawa H. Laser ablation doping process for the synthesis of conductive diamond thin film. Thin Solid Films. 1998;322:28-32.
Mei P, Boyce JB, Lu JP, Ho J, Fulks RT. Pulsed laser crystallization and doping for thin film transistors. J Non-Cryst Solids. 2000;266:1252-9.
Chrisey DB, Inam, A. MRS Bulletin. 1992:37-43.
Karl H, Stritzker, B., . Physical Review Letters. 1992;69:2939-3942.
Lubben D. Laser-induced plasmas for primary ion deposition of epitaxial Ge and Si films. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures. 1985;3:968.
Cotell CM, Grabowski, K. S. . Novel materials applications of pulsed laser deposition. MRS Bulletin. 1992;17:44-53.
El Khakani MA, Chaker, M. . Reactive pulsed laser deposition of iridium oxide thin lms. Thin Solid Films. 1998;335:6-12.
Moreno-Armenta M, Diaz J, Martinez-Ruiz A, Soto G. Synthesis of cubic ruthenium nitride by reactive pulsed laser ablation. Journal of Physics and Chemistry of Solids. 2007;68:1989-94.
Giardini A, Marotta V, Morone A, Orlando S, Parisi GP. Thin films deposition in RF generated plasma by reactive pulsed laser ablation. Applied Surface Science. 2002;197:338-42.
Willmott PR, Spillmann H. Materials by design - exploiting the unique properties of pulsed laser deposition for the synthesis of novel and hard materials structures. Applied Surface Science. 2002;197:432-7.
Alic TY, Kilic HS, Durmus H, Dogan M, Ledingham KWD. A mass spectrometric investigation of isomers of butane. Rapid Communications in Mass Spectrometry. 2012;26:893-905.
Gündoğdu Y, Kepceoğlu A, Kılıç HŞ, Akbaş M, Doğan M, Ledingham KW. Femtosaniye Laser Pulsları Yardımıyla Cn+ (n= 1… 60) Topak İyonlarının Hem C60 Hemde Grafit Hedefler Kullanılarak Ayrı Ayrı Üretimi ve Ölçümü (021101)(1-9). Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2014;14.
Akpinar YZ, Yavuz T, Aslan MA, Kepceoglu A, Kilic HS. Effect of different surface shapes formed by femtosecond laser on zirconia-resin cement shear bond strength. Journal of Adhesion Science and Technology. 2015;29:149-57.
Sager CR, Mackin, T.J., . In-Situ Deposition Measurement of Thin Film Thickness Using a Novel 2-D Optical Method. 2004.
Madde Ölçümleri
Metrics powered by PLOS ALM
Refback'ler
- Şu halde refbacks yoktur.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Selçuk-Teknik Dergisi ISSN:1302-6178