
Selçuk-Teknik Dergisi ISSN 1302-6178 Journal of Selcuk-Technic

Özel Sayı 2020 (ICAT’20) Special Issue 2020 (ICAT’20)

243

BIG, MEDIUM AND LITTLE (BML) SCHEDULING IN FOG ENVIRONMENT

Bashir Yusuf BICHI1,+, Saif UI ISLAM1, Anas Muazu KADEMI3

1COMSATS University, Department of Computer Science, Park Road, Islamabad,

Pakistan

2Yasar University, Department of Computer Engineering, No 37-39 Bornova, Izmir,

Turkey

bbichi2009@kustwudil@.edu.ng, saiflu2004@gmail.com, anas.kademi@yasar.edu.tr

Abstract

Fog computing has got great attntion due to its importance especially in

Internet of Things (IoT) environment where computation at the edge of the

network is most desired. Due to the geographical proximity of resources, Fog

computing exhibits lower latency compared to cloud; however, inefficient

resource allocation in Fog environment can result in higher delays and degraded

performance. Hence, efficient resource scheduling in Fog computing is crucial

to get true benefits of the cloud like services at the proximity of data generation

sources. In this paper, a Big-Medium-Little (BML) scheduling technique is

proposed to efficiently allocate Fog and Cloud resources to the incoming IoT

jobs. Moreover, cooperative and non-cooperative Fog computing environments

are also explored. Additionally, a thorough comparative study of existing

scheduling techniques in Fog-cloud environment is also presented. The

technique is rigorously evaluated and s h o w s promising results in terms of

makespan, energy consumption, latecny and throughput.

Keywords: Cloud node, Fog node, Max-Min, Min-Min, Big, Medium, Little,

Task, Resource, Cooperative and Non-Cooperative Systems.

 This paper has been presented at the ICAT'20 (9th International Conference on Advanced Technologies)

held in Istanbul (Turkey), August 10-12, 2020.

Selçuk-Teknik Dergisi ISSN 1302-6178 Journal of Selcuk-Technic

Özel Sayı 2020 (ICAT’20) Special Issue 2020 (ICAT’20)

244

1. Introduction

In todays world, distributed computing is continuously drawing attention with the

sole purpose of bringing computing resources closer to clients. The advancement of

this idea leads to the introduction of grid computing which later advances to cloud

computing, and now even closer, by what is called fog or edge computing. Cloud

and Fog Computing are two terms that are almost the same, the main difference

in be twee n the two is that fog computing was introduces to bring computing

resources closer to needing computing environment (i.e. Clients and IoT devices)

for task processing. Bringing the two ecosystems (i.e. Cloud and Fog) together

adds efficiency and reduces delay in processing task as compared to sending task

to far distant environment (Cloud). Every day billions of tasks are generated, and

each task needs to be processed in the shortest possible time. Therefore, the need

for Fog has become a necessity to provide clients with efficient and timely task

processing capabilities. According to [16] Fog computing has some outstanding

advantages which include real-time processing of task, it also bridges (IoT) with the

internet computing infrastructure. Another major advantage is that it reduces the

latency and improves quality of service (QoS) of a server by bringing the computation

services, storage and networking services closer to the edge [20]. These advantages

give clients an environment to get access to various resources at earliest possible time

and highly efficient manner. For Fog to attain efficiency it needs to collaborate with

the cloud environment or other fog environments which i s required to introduce

the concept of load sharing between fog nodes or fog and cloud environment. Fog

computing plays a vital role.

Toward reducing delay in providing service to the IoT [1] or clients in need

of computing resources, for example mobile devices (such as those along the

highways) demand high quality streaming via proxies and access points position

along the highway and other places from a nearby Fog node [3], therefore Fog

nodes must be equipped with such high-quality streaming capabilities to meet the

client demand. Bringing the edge closer to the IoT nodes is an important milestone

towards minimizing delay in processing a given request, as stated in [3]. Fog is

the best solution because it is considered more efficient and easy to access. Though

we have seen the advantages, the edge needs to balance the set of requests and

Selçuk-Teknik Dergisi ISSN 1302-6178 Journal of Selcuk-Technic

Özel Sayı 2020 (ICAT’20) Special Issue 2020 (ICAT’20)

245

tasks along its resources for effective use of such resources. According to [5][9],

load balancing is necessary to enhance the overall performance of the distributed

environment. Multiple load balancing techniques were introduced with the objective

of giving each node a fair computing time. There are different load balancing

algorithms proposed in [17] and [19], in the second algorithm the technique allows

for requested data to move from one tier to another i.e. the IoE (Internet of Every

thing) tier to Fog tier and to Cloud tier until the request finds a node that will process

the data, while the former balances load using a technique known as graph re-

partitioning. Having seen the importance of Fog towards providing efficient services,

these data needs to be secured and free from intrusion, [18] [21] discusses some

challenges in the link between the Fog and IoT, these challenges include

authentication/access control where there are issues regarding the security of data

along the Fog node, other issues include man-in-the middle attack. In the

authentication issue the adversary which is often called malicious user may change

their smart meter or spoof an IP address, while the man-in-the-middle attack may

temper with the gateway services of the Fog environment. All these threats are not

predominant, but are considered as a potential issue that may either disrupt services

to the IoT or may increase the latency level in which the user may spend trying to

get services.

1.1. Motivation

Our approach was to build a scheme based on Cloud level max-min, min-

min scheduling scheme. The approach goes beyond the concept of Cloud by

lowering d o w n to the Fog level by extending the mentioned schemes into

what we call Big, Medium, and Little (BML) Scheduling in Fog Environment”.

Load balancing is very important when handling a heterogeneous environment that

processes a request or task sent from a remote IoT to a given server, it also

helps to enhance the performance of a system. The ’loadh balancer’ receives

request from IoT or any other device that send a request and tries to balance

these series of request across different resources (VM) that are within the system

[24]. Many task scheduling algorithms were introduced in the cloud environment

with the aim of balancing the load across different resources of the server such

as in [20] with the aim of obtaining better resource utilization, among these

Selçuk-Teknik Dergisi ISSN 1302-6178 Journal of Selcuk-Technic

Özel Sayı 2020 (ICAT’20) Special Issue 2020 (ICAT’20)

246

algorithms are the max-min and min-min algorithm. This paper proposes a scheduling

algorithm that was based on the idea of the two mentioned algorithms, and applies

these algorithms to the fog environment for efficient task processing. These

algorithms will then be compared in terms of their make-span and utilization. As

observed in the algorithms proposed in [2] [5] [6] [15] [12] [20] [25] in the cloud

environment which proved very effective in improving the environment, but the

algorithms were not tested in the Fog environment to ascertain its behaviors.

Therefore, we rigorously evaluated the algorithms to investigate their behavior in fog

environment, at the same time we compared these algorithms with our proposed

scheme with the aim of observing how the algorithm works in term of its make-

span and utilization rate. One of the main reason of fog environment is to bring

computing resources closer to the needy environment so that those tasks in need

of processing time will be processed quickly, and not to be deprived of a fair

processing time. the scheme we proposed helps by providing a task with a moderate

processing time as well as timely completion of the task. The proposed algorithms

contribute immensely in the fog environment in the following:

1. Reducing make-span: The make-span determines the maximum time at which all

the resources will complete executing a given task, therefore reducing the

maximum make-span implies reducing the time a task will wait seeking computing

time.

2. Higher Utilization rate: Making the system as busy as possible is another important

issue, as cost of processing can yield to more profit to the providers.

3. Fair Processing Time: The algorithm also give task a fair processing time, i.e. a

task is not deprived of and not given too much processing time as well, this can

translate into user and providers concession.

4. Cooperation between Cloud to Fog and Fog to Fog environment for computing

resources.

The rest of this paper is organized as follows; Task Scheduling algorithms was

discussed in section 3, section 4 focuses on transmission and propagation delay in an

environment that consist of cooperative and non-cooperative system of task processing

between fog-to-fog and/or fog-to-cloud node directly. Section 5 discussed on the

mathematical models that were used to derive the relationship between the edge not i.e.

Selçuk-Teknik Dergisi ISSN 1302-6178 Journal of Selcuk-Technic

Özel Sayı 2020 (ICAT’20) Special Issue 2020 (ICAT’20)

247

fog and the upper node i.e. cloud. Lastly section six discussed on the simulated result,

discussions, conclusion and remarks.

2. Related Works

Since the advancement of grid computing which yields to cloud, researchers

have been putting efforts toward finding an efficient strategy in handling the ever-

growing demand of resources, there are number of things being done. The research

work is grouped into two context: scheduling scheme context and environmental

context. In the scheduling context, our work was build based on max-min and min-

min scheduling algorithms in cloud environment which aimed at providing an

appropriate scheduling scheme for a set of task for the cloud resources.

[2][5][6][12][15][20][25][26] work on the basic idea of max-min or min-min

algorithm or both but in the context of cloud environment with the aim of providing

appropriate scheduling scheme for the set of tasks in the cloud environment. [10][23]

this leads to the algorithms that were used as motivation to the fog environment.

The table (table 1) examines the different scheduling algorithms that were in one

way or another related to our work on scheduling scheme for fog environment. [10]

proposes a scheme that work by predicting the completion time of a task on dynamic

and static mode of allocation to the available resources while [23] proposed another

scheme known as multi-tenant Load Distributed Algorithm where task are allocated

based on priorities. All the related works are examine and described in Table 1.

Table 1. Related work

Related

work

Problem/Environment Technique used Advantage Limitation Future work Tool

[2]

Comparison of

different scheduling

algorithm in Cloud

Environment

Min-Min, Max-

Min MCT, MET Based on the

compared criteria,

Min-Min

perfumes

in terms of

makespan, degree

of in-balance and

throughput.

Max-Min and

Min-Min algorithm

are suitable for

small scale task

scheduling

Min-min also gives

higher priority to

smaller task while

max-min give

higher priority to

Improve min-min

algorithm by

optimizing cost

for

task scheduling

CloudSim

Selçuk-Teknik Dergisi ISSN 1302-6178 Journal of Selcuk-Technic

Özel Sayı 2020 (ICAT’20) Special Issue 2020 (ICAT’20)

248

larger tasks

[5]

Resource

management for

Cloud Environment

Max-Min,

Proposed

Max-Min,

Produce lower

makespan

Small scale task

processing

 MATLAB

[6]

Min-Max algorithm

in Cloud

Environment

Min-Min, Min-

Max

Max-Min

Improved the

resource

utilization

Despite pair tasks

are processed at a

time larger task

may still be paired

together

Price of resources

Energy

consumption

Java

Programming

[10]

Priced Time petri

net in Fog

environment

Predict time cost

and prices cost of a

task
Improved

efficiency of

resource

utilization

Prediction may not

give accurate

result, mean small

task can have

higher cost while

larger one may

have lower cost.

Extend resource

allocation

strategy,

average

completion

time, fairness.

Dawn parallel

machine and

Linux

cluster

Extend

[12]

Cluster based

Max-Min for

Cloud Environment

Cluster based

Max-Min

algorithm, Improve

Max-Min, Enhance

Max-Min

Produce lower

makespan than

Improved Max-

Min

and Enhance

Max-Min

Larger task gets to

be processed first

than the smaller

once

K-means

clustering, Fuzzy

C-mean

clustering

CloudSim

[15]

Improve Max-Min

algorithm for

Cloud Environment

Min-Min Max-Min

Improved

Max-Min

Improve

utilization

and performance

of

the system, larger

tasks are handled

by slower resource

while smaller once

are handled by

larger tasks are

assigned to slower

resource which all

adds up to

improving

scalability,

availability and

stability of

Not mentioned CloudSim

[20]

Modified Max-Min

for Cloud

Environment

Max-Min Modified

Max-Min

algorithm

Improve

utilization

and performance

of

resource

As in [15] larger

tasks are assigned

to slower resources

improve

utilization,

performance

CloudSim

[23]

Load Distribution

in Fog

Environment

mtLDAF improved

efficiency

of resources. Task

are sent to

resource

improving load

balance across

Fog-Cloud layers

Not mentioned Java

Selçuk-Teknik Dergisi ISSN 1302-6178 Journal of Selcuk-Technic

Özel Sayı 2020 (ICAT’20) Special Issue 2020 (ICAT’20)

249

3. Proposed Big, Medium and Little Scheduling

Presently there aree over 20 billion networks devices across the [4], and these

devices will work effectively when connected via efficient and reliable host like

Fog and Cloud ecosystem. Therefore, for efficient and better services a proper

scheduling technique will be needed to assign different task to a given resource.

Task schedulings are categorized into two [22]– static and dynamic. In static the

task information is known prior to the scheduling, while in dynamic task are

assigned to a given resource as they arrive i.e. without any prior knowledge of the

arriving task. Scheduling algorithm for Fog environment was proposed in [10]

where the user has the upper hand in choosing a resource from the group of pre-

allocated resources autonomously,: this algorithm is called Price Time Petri Nets

(PTPN). Scheduling algorithm is aimed at minimizing the completion time of a

given task [10]. Another algorithm proposed for the Fog environment is the

multi-tenant load distribution algorithm [23], the proposed load balancing algorithm

considers two key parameters (delay and priority) when a task is sent to the fog

environment,. The algorithm is supposed to minimizes delay and at the same time

increases the utilization of resources. In this paper we proposed a load balancing

based on priority

[25]

User-Priority

Guided Min-Min

Scheduling

Algorithm in Cloud

Environment

LBIMM and

PA-LBIMM

Reduce makespan

and produce better

performance

priority customers

enjoys better

services when

compared to the

general

users. Deadline of a

task, high

heterogeneity of

interconnected

network,

geographical

location of task to

improve

PA-LBIMM

Not mentioned MATLAB

[26]

Enhancing Load

balance in Cloud

Environment

LBMM and

ELBMM

Better makespan

and resource

utilization

Larger task may

occupy a resource

for a long time.

 CloudSim

Selçuk-Teknik Dergisi ISSN 1302-6178 Journal of Selcuk-Technic

Özel Sayı 2020 (ICAT’20) Special Issue 2020 (ICAT’20)

250

algorithm for the Fog environment based on some existing schemes in the cloud

computing environment. The idea of scheduling task was to make appropriate

assignment of task to a resource (which could be virtual resource) in case of

fog or cloud environment. Balancing the load on these nodes can help in

minimizing delay and as well allow for higher utilization of such resource. The

main purpose of Fog is to bring a processing server close to the user (i.e. IoT

or client) this allows for a greater efficiency as stated in [3], therefore it will be

even more efficient when these nodes cooperate with each other. Different

scheduling algorithms were discussed in [2] each with the purpose of minimizing

the makespan of a resource. Makespan is a measure of throughput among set of

computing resources. The makespan is considered as a queue which hold request

or task that need to be processed [15], therefore reducing the makespan time will

be necessary to minimize the delay in which such task will wait until the time it

will be executed. [2] [12] discussed a set of task scheduling algorithms in the

cloud environment and these algorithms are the bases for our proposed scheme

for Fog environmentThe algorithms are;

a. Max-min: this scheduling scheme always assign task with maximum

expected completion time to a resource that give minimum completion time

of that given. There are other schemes that are based on max-min

algorithm which aimed at reducing the makespan, for instance improved

max-min algorithm as implemented in [14] gives lower makespan when

compared to the max-min algorithm. The Max-min Algorithm as given i n

[22] select the task that requires long processing time and assign it to a

resource while the smaller task wait till all the larger task are completed.

b. Min-Min Scheduling: in this scheme task with minimum completion time is

always assigned to its corresponding resource. The scheme starts with a

set of unscheduled tasks then it determines the minimum completion time

for each task on all resources, the task is then assigned to the resources or

machine that give the list completion time [8] [25].

There are many other task scheduling algorithms that were proposed, however

we restricted ourself to the algorithms mentioned above since our proposed

schemes only covers some unique characteristics of the Cloud schemes. All these

Selçuk-Teknik Dergisi ISSN 1302-6178 Journal of Selcuk-Technic

Özel Sayı 2020 (ICAT’20) Special Issue 2020 (ICAT’20)

251

algorithms are employed in the cloud environment and our focus is o n fog node

in relation to the cloud node, so we take the idea of the algorithms and use in

fog environment. The algorithms reduce the maximum makespan of a given

resources that is processing a set of tasks. The makespan is nothing but the

measure of throughput of a resource. The pseudo code below in algorithm 1,

algorithm 2, and, algorithm 3 depict the nature of our proposed Big, Medium and

Little Scheduling scheme in Fog environment.

For all tasks submitted to the meta-task Ti

For all resource R j

c (ij) = E (ij) + r j

while meta-task is not empty do

Find n=number of all minimum values less than Tm

Find set of all minimum values less than Tm

Take Tm mod n= Tn

Assign task Tn to resource R n, n <> m

Remove task Tm form the meta-task

Update r j for selected R j

Update C (ij) for all task

end

Algorithm 1: Medium Scheduling Algorithm

For all submitted tasks in meta-task Ti

For all resources R j

C (ij) = E (ij) + r j

while meta-task is not empty do

Find task Tk consumes maximum completion time.

Assign Tk to the resource R j which gives minimum execution time

Remove Tk from meta-tasks set update r j for selected R j update

C (ij) for all task

end

Algorithm 2: Big Scheduling Algorithm

For all submitted tasks in meta-task Ti For all resource Rj

C (ij) = E (ij) + r j

while meta-task is not empty do

Find the task Tk consumes maximum completion time.

Assign task Tk to the resource R j with minimum execution time.

Selçuk-Teknik Dergisi ISSN 1302-6178 Journal of Selcuk-Technic

Özel Sayı 2020 (ICAT’20) Special Issue 2020 (ICAT’20)

252

Remove the task Tk from meta-tasks set

Update r j for selected R j Update C (ij) for all task

end

Algorithm 3: Small Scheduling Algorithm

The algorithm allows for the resultant n modulo value to assign the task to the

resources that give minimum completion time when compared to the maximum

completion time. The advantage is to give the task a moderate time it may

require in executing the given task at hand. In this paper we will investigate

the makespan, the utilization rate of a resource and energy consumption of a

given resource, the energy consumption is discussed in [7] and shown in

equation (4), makespan and average resource utilization are two very important

metrics when handling scheduling algorithms, as pointed out in [12] [13] [25] the

makespan and average resource utilization are define using the following

mathematical relations;

makespan = 𝑚𝑎𝑥(𝐶𝑖,𝑗) (1)

Resourceusage(RU) =
𝑅𝑡

𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛
 (2)

Averageutilization = ∑
𝑅𝑈

𝑀

𝑚

𝑖=1
 (3)

𝐸𝑖 = (𝑃𝑚𝑎𝑥 − 𝑃𝑚𝑖𝑛) ∗ 𝑈𝑖 + 𝑃𝑚𝑖𝑛 (4)

Were P max is the peak power consumption and P min is the minimum power

consumption, U is the utilization of a given resource. The graphs below describe

how the three (Big, Medium, and Little) schemes works in the Fog environment.

We consider a set of five randomly selected tasks and resource (T1=200, T2=250,

T3=150, T4=300 and T5=100) in MI and three resources (R1=50, R2=100, and

R3=40) in MIPS then the meta-task table is as follows;

The Big scheme works by taking the maximum among the set of tasks e.g.

the maximum value in task 4 (T4) is 7.5. Therefore, we take 7mod2=1, 2 is the

number of all the task on task 4 that are less than 7.5 i.e. 6,3, now if from the

resulting value we take 6, but since our resulting value is 1 we take 2. We then

go back to our initial meta-task and find in what resource 2 falls. finally that resource

will be picked. In the example given, the resource R2 will be assigned the task. The

graph below shows how each task is assign to a given resource based on the meta-

task in Table II.

Selçuk-Teknik Dergisi ISSN 1302-6178 Journal of Selcuk-Technic

Özel Sayı 2020 (ICAT’20) Special Issue 2020 (ICAT’20)

253

Fig. 1. Gantt chart of Little Scheme

Fig. 2. Gantt chart of Big Scheme

Fig. 3. Gantt chart of Medium Scheme

Based on the above Gantt chart in the figure (fig.1), (fig.2), and (fig.3), the little

scheme produced a makespan of 7.5; Big scheme produced a makespan of 10

seconds and our medium scheme produced a makespan of 7 second. Hence, from the

results we conclude that the medium scheme gives less makespan and at the same

time gives each task a fair amount of time that the task may need to fully utilize the

resource.

Selçuk-Teknik Dergisi ISSN 1302-6178 Journal of Selcuk-Technic

Özel Sayı 2020 (ICAT’20) Special Issue 2020 (ICAT’20)

254

Table 2. Meta-Task

 R1 R2 R3
T1 4 2 5
T2 5 2.5 6.25
T3 3 1.5 3.75
T4 6 3 7.5
T5 2 1 2.5

Fig. 4. -A1-A3-A4-A5: Cooperative Systems. A1-A2: Non-cooperative.

4. Cooperative and Non-Cooperative Systems

The main purpose of Fog is to bring computing resources closer to the IoT, or

the client, in this section we presented what is called cooperative and Non-

Cooperative system mode of operation, this scenario is module as a set

𝑁𝑐 = (𝐹1, 𝐹2, . . 𝐹𝑛, 𝐶) for the Cooperative Systems and 𝑁𝑛 = (𝐹, 𝐶) for the Non-

Cooperative Systems. In Cooperative system the Fog environment get to

collaborate with its neighboring Fog node for computing resources. The conceived

idea is presented in the Figure (fig.4). with the purpose of allowing the fog to

contact its neighboring fog whenever it needs external computing resources. For

a set of n tasks equation (5) and (6) show how these set of tasks will be

processed at each layer level.

In Cooperative system the Fog environment get to collaborate with its

neighboring Fog node for computing resources, for instance if we have n number

of task to be process in h Fog environment and potentially the cloud environment,

these tasks will be sent from the pool of resources as shown in the figure above

Selçuk-Teknik Dergisi ISSN 1302-6178 Journal of Selcuk-Technic

Özel Sayı 2020 (ICAT’20) Special Issue 2020 (ICAT’20)

255

(fig.4). tThe system model below shows how all the tasks will be process across the

cooperative fog environment.

𝑇(𝑛) = {
 ∑ 𝐹𝑖(𝑗),

𝑖=4,𝑗=𝑥
𝑖=1, 𝑗=1 𝐹𝑜𝑟 1 ≤ 𝑖 ≥ 4, 1 ≤ 𝑗 ≥ 𝑥

𝐶𝑙(𝑗), 𝐹𝑜𝑟 𝑥 < 𝑗 ≤ 𝑛

 (5)

The conceived idea presented in the figure above (fig.4-A1- A3-A4-A5) allows

the edge to send task to its neighboring fog whenever it needs external computing

resources. The flow chart below explains further how the task will be handle. If a

node has C capacity, that node will select task to its maximum capacity and sent the

rest to its neighboring Fog node until the task if there is any reached the Cloud

environment as describe in the flow chart in the figure (fig.5).

Fig. 5. Cooperative Systems

The Non-Cooperative Systems is the second approach where fog node processes

the requested task and possibly sends some to the cloud environment as shown in

equation (6). The idea of fog collaboration with its neighboring fog node for

computing resources was discussed in [1] but with a slightly different approach.

𝑇(𝑛) = {

 𝐹𝑙(𝑗), 𝐹𝑜𝑟 1 ≤ 𝑖 ≥ 𝑥

𝐶𝑙(𝑗) 𝐹𝑜𝑟 𝑥 < 𝑗 ≤ 𝑛
 (6)

The figure (fig.2-A1-A2) below depicts the non-cooperative systems, fog

environment will select tasks according to its capacity and send the rest are send to the

cloud environment as indicated in the task flow in the figure (fig6).

Selçuk-Teknik Dergisi ISSN 1302-6178 Journal of Selcuk-Technic

Özel Sayı 2020 (ICAT’20) Special Issue 2020 (ICAT’20)

256

Fig. 6. Non- Cooperative Systems

5. Discussion and Mathematical Formulation

For the environment showed in figure (Fig.4), some metF rics are considered

which include the propagation delay and transmission delay between each node.

As earlier mentioned, the simulation environment is assumed to be cooperative and

non-cooperative. The link from the task pool to the nearest Fog node is L distance

and another L distance to the next nearest Fog, the Last nearest node is also a

distance apart from the Cloud node by another L distances. Therefore, the transmission

and propagation delay of each link needs to be computed. 𝑇𝑑
𝐹(𝑖−1)𝐹𝑖 , and 𝑇𝑝

𝐹(𝑖−1)𝐹𝑖 :

are the Transmission and Propagation delay between Fog node i and 𝑖 − 1 respectively.

𝐿𝑓 and 𝐿𝑐: is the average latency at Fog and Cloud node respectively as shown in equation

(7) and (8) respectively. AvrgTh: is the average throughput of the link as shown in

equation (9), 𝐷𝐹𝑖: Average processing delay by a resource at Fog node i as shown in

equation (10), 𝐷𝐶: Average processing delay as shown in equation (11) by a resource at

Cloud node. 𝑇𝑝𝑟𝑜: Average processing time at Fog or Cloud Node.

𝐿𝑓 = ∑ 𝑇𝑑
𝐹(𝑖−1)𝐹𝑖

𝑛

1=1
+ ∑ 𝑇𝑝

𝐹(𝑖−1)𝐹𝑖
𝑛

1=1
 (7)

𝑇(𝑛) = 𝐿𝑓 + 𝑇𝑝(𝐹𝑖𝐶) + 𝑇𝑑(𝐹𝑖𝐶) (8)

𝐴𝑣𝑟𝑇ℎ =
𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑓𝑖𝑙𝑒𝑠𝑖𝑧𝑒

𝑇𝑇∗(2𝑇𝑝)
 (9)

𝐷𝐹𝑖 = 𝐿𝑓 + 𝑇𝑝𝑟𝑜 (10)

Selçuk-Teknik Dergisi ISSN 1302-6178 Journal of Selcuk-Technic

Özel Sayı 2020 (ICAT’20) Special Issue 2020 (ICAT’20)

257

𝐷𝐶 = 𝐿𝑐 + 𝑇𝑝𝑟𝑜 (11)

3. Simulation and Results

We evaluate our proposed scheme by randomly sending set of tasks to the

Fog environment in a uniform distribution pattern from the task pool. wWe assumed

the pool to send 500, 1000, 1500, 2000, 2500, and 3000 set of tasks. The set of tasks

size ranges from 50KB to 2000KB, The Fog nodes were assumed to be IEEE 802.11a/g

which have link rate of 100 Mbps each and that of the Cloud environment is

assumed to be 1Gbps. And at each simulation we assumed the nodes to have the

following processing capacity 100, 200, 300, 400, 500, and 600 tasks at a time. we

assumed five resources each with computing power as follows; R1=200, R2=150,

R3=100, R4=245, and R5=270, the simulation environment is MATLAB R2014b.

The results of our simulations are given as follows;

 Makespan: As explain earlier makespan is a measure of throughput of

all the resources of a given node. The graph in figure (fig.7) shows the

makespan at each level of execution for the set of tasks that were sent from

the task pool to the fog environment for the three algorithms i.e. the Big

algorithm, the Medium algorithm and the Little algorithm for the fog

environment. Based on the graph in figure (fig.7), Medium algorithm

obtained less makespan when executing a given task as compare to the

other algorithms.

Fig. 7. Graph of Makespan for the three algorithms

Selçuk-Teknik Dergisi ISSN 1302-6178 Journal of Selcuk-Technic

Özel Sayı 2020 (ICAT’20) Special Issue 2020 (ICAT’20)

258

 Utilization: The Utilization rate from equation (3) shows the level at which

computing resources are utilized throughout the period at which tasks

are processed, the figure (fig.8) shows the graph of utilization of the three

algorithms. From the result obtained in fig.8 the utilization rate of medium

algorithm is greater than the other two. Based on the figure (fig 8) can conclude

that max-min-mod algorithm make used of almost all the available resources

within, the system which make the environment fully utilized unlike in other

algorithm as stated in [6] that big algorithm has a very low utilization rate.

Fig. 8. Utilization rate of the three Algorithm

 Energy Consumption: In the simulation and based on equation (4) we used some

predefined values that shows Load consumption and power values (in watt) that the

resources (Virtual) will contribute in the overall power consumption of the system,

the server predefined values are from Hp ProLiant G4 86 server. The figure (fig.9)

below shows that energy consumption contributed by the resources for our three

algorithms.

Selçuk-Teknik Dergisi ISSN 1302-6178 Journal of Selcuk-Technic

Özel Sayı 2020 (ICAT’20) Special Issue 2020 (ICAT’20)

259

Fig. 9. Energy Consumption of the three Algorithm

The graph of energy consumption in the Fig. 9 indicates that medium scheme

algorithm contributes more to the energy consumption of entire system. This is because

the medium algorithm has the tendency of using more resources in some case as compared

to the big and little algorithms.

A. COOPERATIVE SYSTEMS AND NON- COOPERATIVE SYSTEMS

As stated that the simulation is based on two systems i.e. cooperative,

where a given fog node collaborate with its neighboring node for computing

resources and non-cooperative were fog node collaborate with the cloud directly. The

scenario is that if a fog node received set of task from the pool, it picks tasks to its

capacity and offloads the remaining to the nearby fog nod or cloud. we investigate the

relationship between the fog nodes and cloud node in terms of the latency of the

link which involves the transmission and propagation delay of each link. We also

consider the links directly and ignore other routing devices that may be found

between the links, as we are interested in node to node communication only. The

results below are based on the medium algorithm for task scheduling, the link rate

of each fog nod is considered to be 100 Mbps and 1 Gpbs for the Cloud environment.

wWe also assumed a distance between the pool of task to the first fog not to be

10Km, and other fog environment are separated by 30KM from each other, and the

Cloud environment is at 500Km from the last fog environment.

1. Average Processing Delay

Figure fig.10 shows the average processing time of set of tasks by a given

Selçuk-Teknik Dergisi ISSN 1302-6178 Journal of Selcuk-Technic

Özel Sayı 2020 (ICAT’20) Special Issue 2020 (ICAT’20)

260

resources in all the Fog environments and that of the cloud environment. The

nodes process these set of tasks almost concurrently, this collaboration between

the nodes give all the task a fair time in which it will be processed completely, and

another issue is that the task independently processes by each Fog node.

Fig. 10. Average Processing Delay

In the Non-cooperative systems, the Fog node sends task directly to the

Cloud environment for processing,in the figure (Fg.11) the Fog sends remaining

task directly to the cloud environment, and from our results the time that the

tasks are processed in somewhat less as when compared to the time the task will

wait at the Fog environments seeking for processing. Therefore, we can directly

assume that in this case Non-Cooperative System works more efficiently and

with less time consumption than the Cooperative Systems.

2. Latency and Throughput: Cooperative and Non-Cooperative

As stated the latency of the link is the time a task takes before it gets to the

processing stage, while the utilization of the link is the rate at which the link to

a given node is been utilized. Based on the result of our simulation in the figure

(Fig.12), the latency at Cooperative system is higher when compared with that of

the Non-Cooperative Systems. However, the graph also indicated the difference

between the two environment is negligible but for a large stream of tasks the

Cooperative System can be considered more suitable than the the Non-Cooperative

Systems.

Selçuk-Teknik Dergisi ISSN 1302-6178 Journal of Selcuk-Technic

Özel Sayı 2020 (ICAT’20) Special Issue 2020 (ICAT’20)

261

Fig. 11. Average Processing Delay: Non-Cooperative System

Fig. 12. Latency: Cooperative and Non-Cooperative Environment

The throughput of the link is given below in figure (Fig.13) and based on the results

we find that the level at which the Cooperative System is utilized is far higher than that

of the Non-Cooperative Systems. Maximum Utilization of a System is the interest of

service providers, therefore the Cooperative Systems in this regard is far better than the

Non-Cooperative Systems.

Selçuk-Teknik Dergisi ISSN 1302-6178 Journal of Selcuk-Technic

Özel Sayı 2020 (ICAT’20) Special Issue 2020 (ICAT’20)

262

Fig. 13. Throughput: Cooperative and Non-Cooperative Environment

6. Conclusion

Efficiency in executing a task is the state of the art for cloud service providers and

due to the ever-growing pool of tasks that is always getting larger and larger by the day,

it becomes necessary for the service providers to look for efficient techniques to handle

these tasks. Because of the geographical proximity of resources, Fog computing

exhibits lower latency compared to cloud computing and inefficient resource

allocation in Fog environment can result in higher delays and degraded performance.

Efficient resource scheduling in Fog computing is crucial to get true benefits

of the cloud like services at the proximity of data generation sources. The

Big-Medium-Little (BML) scheduling technique efficiently allocate Fog and Cloud

resources to the incoming IoT jobs. Our proposed scheme together with the idea of

Cooperative and Non-Cooperative Systems timed the ever-growing pool of tasks by

collaboration between the Fog and Cloud environments. The technique as evaluated,

shows an improved result in terms of makespan, energy consumption, latency

and throughput: an improved max-min and min-min scheduling algorithms in cloud

environment which provide an appropriate scheduling scheme for a set of tasks

for the cloud resources. In essence, the efficiency can be achieved by putting a very

efficient scheme that requires less time to complete a given task, and helps in providing

fast and real-time task executing within a limited amount of time.

Selçuk-Teknik Dergisi ISSN 1302-6178 Journal of Selcuk-Technic

Özel Sayı 2020 (ICAT’20) Special Issue 2020 (ICAT’20)

263

References

[1] Ashkan Yousefpour, Genya Ishigaki, and Jason P. Jue. Fog Computing: Towards

Minimizing Delay in the Internet of Things, 2017 IEEE 1st International

Conference on Edge Computing, Honolulu, HI, USA, Jun 2017,pp 17-24, DOI:

10.1109/IEEE.EDGE.2017.12.

[2] Syed Hamid Hussain Madni, Muhammad Shafie Abd Latiff, Mohammed

Abdullahi, Shafii Muhammad Abdulhamid, and Mohammed Joda Usman.

Performance comparison of heuristic algorithms for task scheduling in IaaS

cloud computing environment,PLoS ONE 12(5), Aug 2016.

https://doi.org/10.1371/journal.pone.0176321.

[3] Mohammad Aazam and Eui-Nam Huh. Fog Computing: The cloud

IoT/IoE middleware paradigm, IEEE Potentials, Volume:35, Issue:3, pp 40-44,

DOI: 10.1109/MPOT.2015.2456213.

[4] Lin Gu, Deze Zeng, Song Guo, Ahmed Barnawi, Yong Xiang.

”Cost Efficient Resource Management in Fog Computing Supported Medical

Cyber-Physical System,” IEEE Transactions on Emerging Topics in Computing,

vol. 5, no.1, pp. 108-119,Jan-March 2017, doi:10.1109/TETC.2015.2508382

[5] Bashir Yusuf Bichi, Tuncay Ercan, and Anas Muazu Kademi. An Efficient

Resource Management in Cloud Computing, International Conference on

Advanced Technology and Sciences, 3th International Conference, ICAT16

Konya, Turkey Sept 01-03, 2016 Proceedings pp.1-6.

[6] Zhou Zhou and Hu Zhigang. Task Scheduling Algorithm based on Greedy

Strategy in Cloud Computing,The Open Cybernetics and Systemics Journal,

Sep 2014, pp 8-11.

[7] Young Choon Lee Albert Y. Zomaya. Energy efficient utilization

of resources in cloud computing systems, Journal of Supercomputing (2012)

60:pp 268280, Springer Science+Business Media, LLC 2010, DOI

10.1007/s11227-010-0421-3.

[8] Bo Li, Yijian Pei1, Hao Wu1, and Bin Shen. Heuristics to allocate

high-performance cloudlets for computation offloading in mobile ad hoc clouds,

J Supercomput DOI 10.1007/s11227-015-1425-9 Springer Science+Business

Media New York 2015.

https://doi.org/10.1371/journal.pone.0176321

Selçuk-Teknik Dergisi ISSN 1302-6178 Journal of Selcuk-Technic

Özel Sayı 2020 (ICAT’20) Special Issue 2020 (ICAT’20)

264

[9] A Saif ul Islam, Jean-Marc Pierson, and Nadeem Javaid. A Novel Utilization-

aware Energy Consumption Model for Content Distribution Networks,

International Journal of Web and Grid Services June 2016. DOI:

10.1504/IJWGS.2017.085146.

[10] Lina Ni, Jinquan Zhang, Changjun Jiang, Chungang Yan and Kan Yu.

Resource Allocation Strategy in Fog Computing Based on Priced Timed Petri

Nets, IEEE Internet of Things Journal Volume: 4, Issue: 5, Oct. 2017, pp1216

- 1228, DOI: 10.1109/JIOT.2017.2709814.

[11] Xie Z, Shao X, Xin Y (2016) A Scheduling Algorithm for Cloud Computing

System Based on the Driver of Dynamic Essential Path. PLoS ONE 11(8):Aug

2016, e0159932. doi:10.1371/journal.pone.0159932

[12] Zonayed Ahmed, Adnan Ferdous Ashrafi, and Maliha Mahbub. Clustering

based Max-Min Scheduling in Cloud Environment, (IJACSA) International

Journal of Advanced Computer Science and Applications Vol. 8, No. 9, 2017.

[13] Yiqiu Fang, Fei Wang, and Junwei Ge. A Task Scheduling Algorithm Based

on Load Balancing in Cloud Computing, 2010 International Conference on

Web Information Systems and Mining (WISM 2010) Oct 2324, 2010, Sanya,

China pp. 271277, 2010. Springer-Verlag Berlin Heidelberg 2010.

[14] S. DEVIPRIYA, and C. RAMESH. IMPROVED MAX-MIN HEURISTIC

MODEL FOR TASK SCHEDULING IN CLOUD, 2013 International Conference

on Green Computing, Communication and Conservation of Energy (ICGCE)

Chennai, India Dec 2013 pp. 883- 888 EEE 2013.

[15] Shubham Mittal and Avita Katal. An Optimized Task Scheduling Algorithm in

Cloud Computing, Advanced Computing (IACC), 2016 IEEE 6th International

Conference, Feb. 2016 Bhimavaram, India, pp. 197-202, DOI:

10.1109/IACC.2016.45.

[16] Songqing Chen, Tao Zhang, and Weisong Shi. Fog Computing, IEEE Internet

Computing Volume: 21, Issue: 2, Mar 2017, pp 4-6, DOI:10.1109/MIC.2017.39.

[17] SONG Ningning, GONG Chao, AN Xingshuo, and ZHAN Qiang. Fog

Computing Dynamic Load Balancing Mechanism Based on Graph Repartitioning,

China Communications Volume: 13, Issue: 3, Mar 2016.pp 156 - 164, DOI:

10.1109/CC.2016.7445510, IEEE Apr 2016.

Selçuk-Teknik Dergisi ISSN 1302-6178 Journal of Selcuk-Technic

Özel Sayı 2020 (ICAT’20) Special Issue 2020 (ICAT’20)

265

[18] Ivan Stojmenovic, and Sheng Wen. The Fog Computing Paradigm: Scenarios and

Security Issues, Proceedings of the 2014 Federated Conference on Computer Science

and Information Systems pp1-8, DOI:10.15439/2014F503.

[19] Rajwinder Kaur, and Pawan Luthra. Load Balancing in Cloud System using Max

Min and Min Min Algorithm, National Conference on Emerging Trends in Computer

Technology (NCETCT-2014) International Journal of Computer Applications (0975

8887).

[20] Kang Kai, Wang Cong, and Luo Tao Fog computing for vehicular Ad-hoc

networks: paradigms, scenarios, and issues, The Journal of China Universities of

Posts and Telecommunications Volume 23, Issue 2, April 2016, pp 56-65, 96.

https://doi.org/10.1016/S1005-8885(16)60021-3.

[21] Arwa Alrawais, Abdulrahman Alhothaily, Chunqiang Hu, and Xiuzhen Cheng,

Fog Computing for the Internet of Things: Security and Privacy Issues, IEEE

Internet Computing Volume: 21, Issue: 2, Mar.-Apr. 2017, pp 34-42.

DOI:10.1109/MIC.2017.37.

[22] Neeta Patil,and Deepak Aeloor. ”A Review - Different Scheduling Algorithms in

Cloud Computing Environment,” Intelligent Systems and Control (ISCO) 2017 11th

International Conference Jan. 2017, Coimbatore, India.

DOI:10.1109/ISCO.2017.7855977.

[23] Euclides C. Pinto Neto, Gustavo Callou, and Fernando Aires, An Algorithm to

Optimise the Load Distribution of Fog Environments, Systems, Man, and

Cybernetics (SMC), 2017 IEEE International Conference, Oct 5-8, 2017 Banff

Center, Banff, Canada, pp1292-1297. DOI:10.1109/SMC.2017.8122791.

[24] Einollah Jafarnejad Ghomi, Amir Masoud Rahmani, and Nooruldeen Nasih Qade.

Load-balancing algorithms in cloud computing: A survey, Journal of Network and

Computer Applications 88 (2017), pp 5071, journal homepage:

www.elsevier.com/locate/jnca.

[25] Huankai Chen, Frank Wang, Na Helian, and Gbola Akanmu Userpriority guided

Min-Min scheduling algorithm for load balancing in cloud omputing, National

Conference on Parallel Computing Technologies, PARCOMPTECH 2013 Publisher:

IEEE, DOI: 10.1109/Par- CompTech.2013.6621389.

[26] Gaurang Patel Rutvik Mehta Upendra Bhoi Enhanced Load Balanced Min-min

https://doi.org/10.1016/S1005-8885(16)60021-3
http://www.elsevier.com/locate/jnca

Selçuk-Teknik Dergisi ISSN 1302-6178 Journal of Selcuk-Technic

Özel Sayı 2020 (ICAT’20) Special Issue 2020 (ICAT’20)

266

Algorithm for Static Meta Task Scheduling in Cloud Computing, 3rd International

Conference on Resent Trends in Computing 57(2015), pp 545-553,

https://doi.org/10.1016/j.procs.2015.07.385.

https://doi.org/10.1016/j.procs.2015.07.385

