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Abstract 

Especially in the last decade, Artificial Intelligence (AI) has gained increasing 

popularity as the neural networks represent incredibly exciting and powerful machine 

learning-based techniques that can solve many real-time problems. The learning capability 

of such systems is directly related with the evaluation methods used. In this study, the 

effectiveness of the calculation parameters in a Single-Hidden Layer Feedforward Neural 

Networks (SLFNs) will be examined. We will present how important the selection of an 

activation function is in the learning stage. A lot of work is developed and presented for 

SLFNs up to now. Our study uses one of the most commonly known learning algorithms, 

which is Extreme Learning Machine (ELM). Main task of an activation function is to map 

the input value of a neural network to the output node with a high learning or achievement 

rate. However, determining the correct activation function is not as simple as thought. First 

we try to show the effect of the activation functions on different datasets and then we propose 

a method for selection process of it due to the characteristic of any dataset. The results show 

that this process is providing a remarkably better performance and learning rate in a sample 

neural network. 

Keywords: Machine Learning, SLFN, ELM. 

 

1.   Introduction 

 Neural networks are widely used in many areas because of their powerful, fast and 

accurate learning capacities. Many new and different algorithms have been put forward and 
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studies have been presented in Artificial Intelligence (AI). Additionally, many different types 

of machine learning methodologies are developing gradually. The purpose of our study is to 

present the role of activation function in a neural network. ELM is the one of the most popular 

learning methods used for such neural networks.  

 Despite many data and inputs available, AI mechanisms or smart systems are still 

lacking in powerful interpreter systems that can comment on these results. For example, in 

cancer detection cases, there might be many data; however, there are still cases that you can 

encounter with false positives or true negatives. Generally, it will not be so clear that which 

features you will use for better learning. Though there are many studies in this area, an 

optimization in this AI field seems to be valuable. 

At this point, ELM capable of high and fast learning rate in neural networks can take 

part. The inputs and their selection methods are important; however, related two topics come 

forward. The first one is the importance levels of the inputs. Studies [1-4] can be examined 

on such a topic.  This is so important that for example you might have 10 inputs for a case, 

and then if you select only third and fifth features of that dataset, learning rate might be more 

than the status which all features are involved. 

The second topic is to get the hidden neuron matrix (H) that is to evaluated due to the 

activation function. This matrix is required for mapping the inputs to the output nodes. After 

determining the weight matrix, an activation function is selected and all the values in that 

matrix are manipulated due to it. This means the learning capacity of the network is directly 

related with both weight matrix and the activation function.  

Although the number of the hidden neurons is important for getting higher learning 

rates, activation function in SLFN has also a remarkable effect for achieving higher learning 

levels. We think that this work can be used for determining the activation function and can 

form a base for another work. 

In this study, small and medium sized data sets from [5] will be used, and in order to 

get rid of the effect of hidden number of neurons on the experiments, a varying range of 

hidden neuron number will be used in the experiments. Thus within those ranges, the effect 

of different types of activation functions will be seen and observed at the same time.  

In the 2nd part related works will be mentioned, in the 3rd section the activation 
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functions and formulations will be discussed. Experimental studies will be presented in the 

4th section and a method for determining the most appropriate one for any dataset will be 

proposed. Lastly, comments about future work and results will be discussed. 

 

2.   Related Works 

Up to now, there are many examples of machine learning studies using ELM. The 

process starts with instantiating the links between the input and output layers. Initially, hidden 

neurons are randomly assigned; weight and biases are calculated due to inputs. Then this 

matrix is processed with the activation function, which is one of the important levels of the 

process. Then the output connections are set and found by reducing the cost function to a 

minimum through a linear system. Also mentioned in the related website [6], ELM is used 

for deriving learning methodologies in a similar way in many AI areas because of having low 

computational complexity, accurate results and being very fast [ 1, 2, 4]. 

Especially effect of activation functions and saturation during training formulations are 

discussed in [7]. After making experiments with sigmoid, hyperbolic tangent functions and 

some other types, they declared that the logistic regression or conditional log-likelihood cost 

function worked better for any type of classification. It’s also mentioned in the same study 

that classical neural networks with sigmoid or hyperbolic tangent functions, converge more 

slowly and apparently get stuck ultimately to a poorer local minima [7]. 

However, a new recurrent neural network with one-layer architecture and a 

discontinuous hard-limiting activation function for solving quadratic programming problems 

have been discussed in [8]. Study examining quadratic and nonlinear programming and SVM 

learning methods, puts forward the benefits of a recurrent neural network over a general one. 

In the final study, a number of activation functions have been examined. It has been 

declared that most deep neural networks generally use non-periodic and monotonic activation 

functions. Neural networks with a single hidden layer using sinusoidal activation functions 

is declared to be used largely and by this, higher learning rates are more probable with the 

networks relying on the periodicity of the sinusoids [9].  

Our study shows and discuss all of the types of functions discussed in this part. 
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3.   Implementation 

3.1 Extreme Learning Machine (ELM) 

The purpose of this study is to show the precise effect of hidden neurons in any neural 

network. We will also suggest a new method based on the nature of the data set to achieve a 

higher learning rate. 

The problem solving technique here proposes a learning methodology for Single-

hidden Layer Feedforward Neural network (SLFN)s. We will use a learning algorithm called 

ELM whose learning speed is much faster than traditional feedforward network learning 

algorithms like back-propagation (BP). For detailed information, studies [1-4] can be 

examined. However, for better understanding ELM will be explained briefly. 

The output of SLFN having L number of hidden nodes is represented in (1) below; 

fL(x) = 


L

i

i

1

 G(ai, bi, x),  x ∈ Rn, ai ∈ Rn, (1) 

where ai and bi are learning parameters of hidden nodes and βi is the weight connecting the 

ith hidden node to the output node. G(ai, bi, x) is the output of the ith hidden node with respect 

to the input x.  

Given a standard SLFN with L hidden nodes and activation function g: R  R, which 

is infinitely differentiable in any interval and the hidden layer, output matrix H of the SLFN 

is invertible and defined as in (2); 

H β = T     (2) 

H is the output of hidden layer matrix of the neural network. The ith column of H is the 

ith hidden node’s output vector with respect to inputs x1, x2, …, xN and the jth row of H is the 

output vector of the hidden layer with respect to input xj. T is the training error matrix in (2) 

and the smallest training error can be reached by this solution: i.e, min ||β|| and min ||H β - 

T|| a simple representation of the solution of the system in (2). This is also the target of the 

whole network and explained in detail in [1, 2]. 

3.2. Activation functions  

In SLFNs, hidden neurons are modeled using an activation function for output. This 

function is important to implement and help to understand functional mapping between input 

and output nodes in a SLFN. By applying properties of the activation function to the neural 
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network, the input signal is transformed to the output counterpart. For estimating the role of 

an activation function in a neural network, a sample illustration has been shown in Figure 1. 

 

Figure 1. Role of activation function in a neural network 

4 different types of activation function will be discussed in this study; 

1)  Sigmoid Function 

Sigmoid is a non-linear, monotonic and S-shaped activation function that produces an 

output value in the range (0, 1). In this context, sigmoidal function is a special form of logistic 

function and is defined in (3); 

sig(x) =  
xe1

1
 (3) 

A sigmoid function is a bounded differentiable real function that is defined for all real 

input values and has a positive derivative at each point. Sigmoid functions are known to be 

one of the most commonly used and major hidden layer output functions used in a neural 

network. A wide variety of sigmoid functions have been used as the activation function of 

artificial neurons, including the logistic and hyperbolic tangent functions. 

2) Tanh(hyperbolic tangent) Function 

Tanh has a similar characteristic to that of sigmoid. It is nonlinear function and has a 

bound to range (-1, 1). Deciding between the sigmoid or tanh will depend on the requirement 

of gradient strength and is defined in (4); 

tanh (x) =  
xx

xx

ee

ee







 (4) 

Like sigmoid, tanh also has the vanishing gradient problem. This problem originates 

from multiplying many small numbers to compute gradients of the “front” layers in a neural 

network, ending in the gradient decreases exponentially. Since gradient is so small, 
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computation is calculated down to limits of floating point data types and the system cannot 

learn any further or drastically degrade. 

3) Sine Function 

Sine is one of the commonly used nonlinear functions and has a bound to range (-1, 1). 

It is a periodic function and has rises and falls. However, the function saturated and its output 

converges to zero for large positive and negative inputs. These sinusoids are commonly 

defined as a generalized Fourier decomposition and have the potential to converge to a local 

minimum in their approximation capacity. 

4) Hardlim Function 

The hard limit transfer function forces a neuron to output a “1” if its net input reaches a 

threshold, otherwise it outputs “0”. This allows a neuron to make a decision or classification. 

It can say yes or no finally and is defined in (6); 

hardlim(x) = 1 if x ≥ 0 

                   0 otherwise (6) 

Hardlim is a neural transfer function that calculates a layer’s output from its net input. 

 

4.   Experiment Results 

All experiments are done on a computer having 64-bit Windows 7 operating system, 

i5 4200u 1.6 Ghz. processor and 8 GB. RAM. Datasets are taken from UCI web page [1] 

which is commonly used and referenced in this field. An ascending order of datasets is 

presented due to the number of features and the instances in Table 1. Datasets will be referred 

with their IDs as shown from now on. 

For each test, 10-fold cross validation method has been used for avoiding the effect of 

chance. This method, as mentioned in [10], whole data set is equally divided into defined 

fold number, i.e. 10 for our case. Then among 10 equal parts, the first 9 pieces are used for 

learning and the final part is used for testing. In this way, all parts are subjected to the same 

process by exchanging one by one. Thus, all sub parts are rotated 10 times in the same way, 

i.e. 9 for learning, 1 for testing. Finally, the averages of all runs are taken and the results are 

calculated. 
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Table 1. Used Datasets and Characteristics. 

Dataset ID # instances # features # output 

Iris IRI 150 4 3 

Monk1 MK1 432 7 2 

Monk2 MK2 432 7 2 

Monk3 MK3 432 7 2 

Ionosphere ION 351 34 2 

WDBC WDB 569 32 2 

Pima Indian Dia. PID 768 8 2 

Wis.Bre.Cancer(Org) WIS 699 10 2 

Waveform WAV 569 21 3 

Spambase SPM 4601 57 2 

 

The test results are shown in Figure 2. All 10 datasets in Table 1 are put together and 

one whole figure is created. Each dataset has its own ID name on top of itself. Horizontal 

scale shows number of hidden neurons changing form 10% to 200%. This percentage is 

obtained by dividing the used number of hidden neurons to the number of instances in the 

dataset. Vertical scale shows the accuracy level achieved. It is between (0.0 - 1.0) as in (7).  

Accuracy = 
# 𝑡𝑟𝑢𝑙𝑦_𝑘𝑛𝑜𝑤𝑛_𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠

# 𝑎𝑙𝑙 _𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠
 (7) 

Figure 2 shows the learning rate of activation functions with respect to datasets. In the 

experiments, the number of hidden neurons is also changing and inevitably has an effect on 

the learning rate of the system. In order to get rid of those effects, commonly used ranges are 

assigned and experiments are done due to these ranges, varying from 10% to 200% of the 

instance number of the dataset. All 10 datasets in Table 1 are included in Figure 2, and each 

dataset are applied with same hidden number of neurons and the same activation functions. 

Consequently, we will take the sample mean of all results and be able to see the real, purified 

effect of the activation function on the learning rate. 
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If we examine Figure 2, activation functions using sigmoid and sinusoid seem to be 

more successful for predicting the output. Another point to take attention is that the values 

tend to come closer after 40%-50%’s of horizontal scale, which means deviation gets smaller. 

Because the more hidden number of neurons, you put in H matrix, the more accuracy you 

get.  

As a result, this effect caused a variance of the distribution of the sample mean, and it 

can be clearly observed that values between 10% and 50% have more deviance and cause 

more error. Because of that, values greater than 60% will be taken into consideration and 

added to calculations to get the average. After taking the average of the values in Figure 2 as 

stated, we will get Figure 3. Here we can see the performance results of activation functions 

due to the datasets.  

For example, in Figure 3, WIS dataset shows the average of values of 4 activation 

functions of WIS dataset that are changing between 60% and 200% stated in Figure 2. In 

addition, we can observe which activation function has the most learning rate separately for 

that and the other datasets together. 

If to talk about execution times of activation functions, they are almost close to each 

other, changing from 0.5 sec to 30 sec. In fact, the fundamental difference for execution times 

is originating from the size of dataset. The smaller dataset used, the shorter time it is to spent 

for execution. It can be inferred that the effect of activation function is negligible for the 

execution times. 



 

 

 

Figure 2. Results of activation functions with changing hidden neurons due to datasets. 
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Now we can propose a method for the data used in the experiments. If we examine 

Figure 3, sigmoid activation function proves to be the most successful among others. Because 

many natural processes, such as those of complex system learning curves, exhibit a 

progression from small beginnings that accelerates and approaches a climax over time and a 

sigmoid function most probably best suits for such a case. Thus, a mapping process of a 

sigmoid function might be most successful on such conventions.  

Likewise, when a detailed description or information is lacking, sigmoid function can 

often be used and is acceptable among others [11]. 

 

 

Figure 3. Dataset Performance due to Activation Functions. 

On the other hand, Sine function has a similar learning capacity, which is very close to 

that of sigmoid. This is mainly because of having the same origins. They are both non-linear, 

monotonic and have similar ranges for negative and positive infinity values. 

Additionally, back propagation relies on the use of a differentiable activation function 

and commonly use sigmoid. However, replacing it with another differentiable function such 

as sine does not affect the convergence so much and thus we get similar results for these two 

functions. 

Tanh function turns out that the logistic sigmoid that might “stuck” to a minimum 

during training. This is partially due to the fact that if a strongly-negative input is provided 

to the logistic sigmoid, it outputs values very close to zero that degrades learning. Because 

of that, tanh function has the worst performance among the others. 
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Hard limit (hardlim) transfer function forces a neuron to output a 1 if its net input 

reaches a threshold, otherwise it outputs 0. This allows a rough calculation for the output and 

lower performance is observed. As seen in Table 2, general averages of 4 types of activation 

functions are given due to average performance value of accuracy levels of all datasets. The 

highest one is sigmoid and sinusoid functions respectively. 

Table 2. General Performance of Activation Functions 

Function Name Learning Rate (%) 

Sigmoid 69,86 

Sine 69,75 

Tanh 41,11 

Hardlim 52,29 

 

Table 2 shows the learning capabilities of the activation functions that form the goal of 

this study. Besides that, as the dataset sizes increase in terms of instances and feature 

numbers, sigmoid function seems to achieve better learning rates as seen in Figure 3. This 

result is also similar for sine function since they are similar. Consequently, most appropriate 

activation function for our study is either sigmoid or a sine function as in Table 2. 

Finally, our method to propose is that if you do not have enough information about the 

characteristic of our data you can use sigmoid as activation function without any problem. If 

you have idea, for example if it is medium-sized or a huge dataset, you can prefer non-linear, 

monotonic and a derivative function that can smooth gradient of the data which is an 

important parameter.  

 

5.    Conclusion 

In this study, we examined the effects of activation functions in a neural network. 

However, sigmoid function which is also called as standard logistic function is still very 

popular in classification problems and can be used on any occasion. On the other hand, sine 

function is also acceptable. 
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One of the most probable future works might be to examine the effect of hidden 

neurons in neural networks. It is also observed in our experiments that any changes in this 

number might have a remarkable effect on the learning capacity of the system. An optimized 

point on this topic might be a promising future work. 
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