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Abstract  
 

This paper introduces a 2H  sub-optimal approach to design state feedback controllers 

for switched system with parameter uncertainty. Minimum dwell time stability analysis 

techniques are revisited and combined with the 2H -optimal control to obtain a robust state 

feedback controller for switched systems. Two kinds of Lyapunov functions have been used 

to find a switched controller, the time varying and constant controller gains have been given 

for the switched system. The proposed approaches have been illustrated by means of 

examples. 

Keywords: 2H -optimal control, Switched Systems, Lyapunov function, Minimum Dwell 

time. 
 
 

1. Introduction 

Switched systems appear in many applications such as auto pilot design, heating 

systems, automatic transmissions, communication networks, DC-DC converters automotive 

engine control, and so on. Such switched control systems may consist of locally designed 

controllers switched according to a logic rule designed to meet the desired control objectives 

[1].  

In the last years, the analysis and synthesis of switched systems have got more attention 

because of their importance in both theory and applications. For the stability analysis and 

control design of switched systems, many important methods have been investigated by 
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several researchers so far (see [2–14] and references therein). For the stability analysis issue, 

various techniques have been mentioned such as common quadratic Lyapunov function 

method, multiple Lyapunov functions method, average and minimum dwell-time methods 

[9–17]. In most cases, common quadratic Lyapunov method does not provide a solution for 

given switched systems due to its conservativity. Multiple Lyapunov function method 

provides the asymptotic stability of the switched system for any switching signal, if the all 

subsystems are stable and the time interval between two consecutive switching instants is 

sufficiently large. From this, minimum dwell time switching theories have been developed 

in recent works to guarantee stability of switched linear system and obtain minimum dwell 

time between two consecutive switching [7–10].  

Optimal control methods, which are part of the modern control theory, play an 

important role in many feedback control design. Optimal control focuses on the minimization 

of a performance index (PI) that depends on the system matrices. The PI might contain, for 

example, information of control effort, information of operating error, or any other features 

which are necessary to the user of control system. The main purpose of optimal control theory 

is to determine a control signal that satisfies the terminal state constraints and also minimize 

the PI [18].  

In the current work, we address the 2H -optimal control problem, and state feedback 

controller synthesis for switched systems with dwell time. In this case, the switched system 

parameters have polytopic uncertainty. In [5], conservatism of the robust H  design is 

reduced by using a piecewise linear quadratic Lyapunov function in time. In [6], stability and 

stabilization problem of switched linear systems with dwell time are solved by using the same 

function. In [8], this function is also used to find and minimize the 2L -gain of uncertain 

switched linear systems with dwell time. Using the same function, robust filter is designed 

in [19]. We apply here the same Lyapunov function to 2H -optimal control in order to 

minimize sensitivity of the system output to a zero mean white noise input.  

This paper is as follows: A minimum dwell time stability analysis is presented in 

Section 2. The new approach to compute the robust state feedback switched controller is 
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given in Section 3. There illustrative examples about the proposed approaches are given in 

Section 4. Finally, Section 5 gives conclusions.  

Notation: (.)Tr  denotes the trace function for square matrices. The hermitian operator 

{.}He  is defined as TAA{A} He . For symmetric matrices, )0(0 P  indicates that 

P  is positive definite (semi-definite). A symmetric matrix 







R

Q

Q

P
T  is denoted by .

* 







R

QP
 

n  stands for the n  dimensional Euclidean space. 
qp is the set of all qp  real matrices. 

 is set of natural numbers. 

 

2. Preliminaries 

A switched system with polytopic uncertainty is defined as 

.)0(and0),()()()( 0)(,)(,)( xxttwBtuBtxAtx twtut                   (1) 

Where 
ntx )(  is the state, 0x  is initial condition, 

ptu )( , 
rtw )(  is the 

exogenous input and )(t  represents the switching rule between system matrices 

MiA nn
i ,,1 

. The uncertain system matrices are assumed to reside within the 

following polytope: 
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where j  is the index of the polytope vertices and N denotes number of polytope vertices. 

Definition 1: Dwell time is a time-interval between two switching instants ),,( 21 tt . 

It is assumed to be equal or greater than a minimum dwell time dlld TttT 1(,  for )1l . 

Definition 2: Consider the index of the initial subsystem, )0(0 i  and the 

commutation instants ,, 21 tt , where 1,1  lTtt dll  and l . If the minimum dwell 

time between two switching instants is divided into H  equal sampling time intervals, then 
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hlt ,  is defined as HhTtt dlhl /,   for Hh ,,0  , and 0,ll tt  . The time-varying Lyapunov 

function is defined as 

),()()()( )( txtPtxtV t
T

                                              (3)  

where )()( tP t which is in (t)},(t){ 1 MP,P  according to (t) , defined as: 
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where 1,,0  Hh  , the number of the switching is defined as l and where H  is 

given a positive integer. This definition shows that the matrices )(tPi  are constant and equal 

to HiP ,0
 before the first switching instant. During the minimum dwell time, the matrices 

)(tPi change linearly. After the minimum dwell time, and before the following switching 

instant, the matrices )(tPi are constant and equal to HiP, . 

 Based on the time-varying Lyapunov function, the following lemma deals with the 

stability of a switched system with polytopic uncertainty. 

Lemma 1 ([6]): For a given 0dT , if there exist a set of positive definite matrices   

,0, hiP ,,,1 Mi  Hh ,,0  that satisfy the following LMI’s for all Mi ,,1  and

Nj ,,1 : 

    ,0
/

)(
,
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d

hihi APHe
HT

PP
                            (5a) 
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)(
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
 j

ihi
d

hihi APHe
HT

PP
                            (5b) 

where 1,,0  Hh   and 

  ,0)(
, j

iHi APHe                                   (5c) 
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 MsPP sHi ,,1,00,,   and is                            (5d) 

then the system (1) with the uncertainty (2) is globally asymptotically stable for any 

switching rule with dwell time that is greater than the minimum dwell time, dT  (see [6], for 

detailed proof). 

Note that, before the first switching, the decreasing of the Lyapunov function is proved 

by the condition (5c). During the minimum dwell time, the conditions in (5a-b) prove that 

the Lyapunov function is decreasing. Then, the condition in (5c) proves that )(tV  is 

decreasing, after the minimum dwell time and before the next switching. During the 

switching instants, the Lyapunov function is proved to be non-increasing by the condition in 

(5d) [6]. 

The Lyapunov function (3) uses the same Lyapunov matrix (4) for all vertices of the 

subsystems. Hence, it is more conservative with regards to the stability conditions. This 

conservatism issue is reduced by using the time-varying and parameter (vertex) dependent 

Lyapunov function [6]. 

Definition 3: Time-varying and parameter dependent Lyapunov function is 
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where ,1,,0  Hh   ,,,1 Nj   the number of the switching is defined as l  and H  

is given a positive integer. Note that, the difference between (3) and (6) is that Lyapunov 

matrices in (6) depend on the sub-polytopes vertices [6]. 

Based on the time-varying and parameter dependent Lyapunov function, the following 

lemma deals with the stability of a switched system with polytopic uncertainty. 
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Lemma 2 ([6]): For a given 0dT , if there exist a set of matrices hihi GS ,, ,  and positive 

definite matrices ,0)(
, j
hiP  ,,,1 Mi  ,,,0 Hh  Nj ,,1 , such that, for all 

,,,1 Mi  and Nj ,,1  the following conditions hold 
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where 1,,0  Hh   and 
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 ,,,1,0)(
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Hi  and is                        (8d) 

then the system (1) with an uncertainty (2) is globally asymptotically stable for any switching 

rule with dwell time that is greater than minimum dwell time, dT  (see [6], for detailed proof). 

 In this work, Lemmas 1 and 2 are used to find a stabilizing switched state feedback 

controller as in following section. 

 

3. Robust Controller Design 

In this section, we combine the standard 2H -optimal control and the minimum dwell 

time methods mentioned in the previous section. In addition, it allows us to design the state 

feedback 2H -optimal controller for the switched system with polytopic parameter 

uncertainties. Here, the sensitivity of the system output to a zero mean white noise input w

is minimized by using 2H  optimization technique. 
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Lemma 3 ( 2H -gain [21]): Consider a linear time-varying system, 

,)()(,)()()( xtCtzwtBxtAtx w                                   (9) 

where w  is the exogenous input and z  is the system output. If there exist symmetric 

matrices, 0)( tQ  and ,Z  then 2H -gain of the system given in (9) is less than ,  if the 

following conditions hold: 
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For a switched system, Q  is defined as: )()( tQ t  with  Mt ,,2,1)(   and where 

)(tQi  is defined as: 
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where 1,,0  Hh  , the switching index is defined as l  and H  is given a positive 

integer. Using Lemmas 1 and 3, the following Theorem is given for the state feedback 

controller gain. 

Theorem 1: For a given 0dT , if the set of matrices hiL , of compatible size and the 

collection of symmetric matrices, Z and ,0, hiQ  ,,,1 Mi  Hh ,,0 satisfy the 

following LMI’s for all ,,,1 Mi  and Nj ,,1 : 
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then there exists a state-feedback regulator )()( tK t  which is in (t)},(t),{ 1 MKK  according 

to (t) , defined as: 
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where    dhlhihihihi THttLLL /L ,,1,,,    and    dhlhihihihi THttQQQ /Q ,,1,,,   , 

such that the closed-loop system (system (1) with (12) and uncertainty (2)) is quadratically 

stable for any switching rule with a dwell time that is greater than the minimum dwell time, 

dT and such that the 2H -gain from w   to z   is less than or equal to )(ZTr . To get the 

best upper bound, we need to minimize )(ZTr . Note that this theorem provides a state 

feedback gain which is time varying during the dwell time. 

In most cases, a time varying controller may not be desirable for the switched systems, 

so a time invariant state feedback controller can be designed using the following lemma. The 

parameter (vertex) dependent Lyapunov function (6) is used to reduce the conservatism in 
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Lemma 2. Hence, we combine with this lemma and 2H -optimal control approach in Lemma 

3, and then design a time invariant state feedback controller for the switched system with 

polytopic parameter uncertainty. 

The time-varying and parameter dependent positive definite matrix, 
)(
)(

j
tQ  which is in

(t)},(t),{ 1
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M
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where 1,,0  Hh  , Nj ,,1 , the number of the switching is defined as l and H  

is given a positive integer. Using Lemmas 2 and 3, the following Theorem is given for a time 

invariant state feedback controller gain. 

Theorem 2: For given scalars 0  and 0dT , if the set of matrices, iS  and iL  are 

of compatible size and the collection of symmetric matrices, Z  and 0)(
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where 1,,0  Hh   and 
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i LBSAHe   then there exists a state-feedback regulator defined 

as: 1 iii SLK  such that the closed-loop system (system (1) with iK  and uncertainty (2)) is 

quadratically stable for any switching rule with a dwell time that is greater than the minimum 

dwell time, dT and such that the 2H -gain from w  to z  is less than or equal to .)(ZTr  

To get the best upper bound, we need to minimize )(ZTr . 

 

4. Examples 

Example 1 (Uncertainty): Consider the system taken from [20] where the uncertainty 

is added to the subsystems  
























 ,
19

1
,

12

1
21 AA                           (14) 

The stability of the system is proven by using Lemma 1 and Lemma 2. The minimum 

dwell time results for different uncertainty values are given in Table 1 and 2. 

Tables 1 and 2 show that a less conservative result is found when H  is increased. In 

addition, Lemma 2 always finds the smallest dT . This proves that Lemma 2 gives less 

conservative results than Lemma 1 due to using parameter dependent Lyapunov function (6). 
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These results encourage us to use Lemma 2 in the controller design approach. 

Table 1. Minimum dwell time, dT  results of Lemma 1 

\H  0 0.2 0.4 0.6 0.8 

1 0.8538 1.2443 1.9696 3.8055 21.4936

2 0.7460 1.1324 1.7168 3.1325 14.8181

5 0.6727 1.0537 1.5607 2.7588 11.7833

10 0.6503 1.0049 1.4918 2.5549 10.8656

100 0.6267 0.8644 1.3594 2.0091 9.39750

 

 

Table 2. Minimum dwell time, dT results of Lemma 2. 

\H  0 0.2 0.4 0.6 0.8 

1 0.8538 1.2333 1.8882 3.2652 7.6227 

2 0.7460 1.1248 1.6536 2.7175 6.0128 

5 0.6727 1.0504 1.5150 2.4186 5.2460 

10 0.6503 1.0039 1.4649 2.2631 5.0168 

100 0.6267 0.8643 1.3450 1.9564 4.7364 

 

Example 2 (Controller Design): We consider the system (1) with 1A and 2A same as 

in Example 1 and 

,
2.0

5.0
,

2

1.0
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2.0
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1
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




 ww BBBB                   (15) 

where the uncertainty is assumed to be 8.0 . We seek the uncertain system (14) that 

satisfies the same dwell time as in the nominal system (when the uncertainty, 0 ). 

Therefore, this can be achieved using the state feedback controller design Theorems 1 and 2. 

To apply the robust controller design theorems in Section 3, the system is defined as: 



 
Selçuk-Teknik Dergisi ISSN 1302-6178 Journal of Selcuk-Technic 
Özel Sayı 2018 (ICENTE’17)    Special Issue 2018 (ICENTE'17) 
 

128 

,

1.0

0

0

,

12.0

0

0

,

0

1.0

0

0

0

2.0

,

0

1.0

0

0

0

3.0

2,1,21



































































 uu DDCC              (16) 

with 1H  and sTd 63.0 , Theorem 1 gives  
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The upper bound on the closed-loop 2H -gain is 2813.0  and the time varying 

switched state feedback controller is computed with (12). 

Using Theorem 2, with 1H , 04.0  and sTd 63.0 , we get 1K  

 ,373.03634.4  ,0337.09495.02 K  for which the upper bound on the closed-loop 

2H -gain is 2743.0 . 

The system is simulated with a periodic switching sequence    ),2,0(, it

    ,2,2,1, dd TT . Here, the parameter uncertainty is chosen as 8.0 . The responses of 

the open loop switched system are given in Figure 1 which shows that the system is unstable. 

Here, x1 and x2 represent the states of the system. Figure 2 presents the trajectory responses 

of the closed-loop (controlled) switched systems with respectively a time varying and 

constant controller gains that are asymptotically stable. 

As it can be seen, the proposed control strategies can stabilize an uncertain switched 

system with a given dwell time. The constant controller is slower but has a smaller 2H -gain 

bound than the time varying controller. 
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Figure 1. Open-loop response 

 

 

Figure 2. Closed-loop responses. 
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5. Conclusion 

In this paper, an 2H  sub-optimal state feedback controller synthesis method for 

switched linear systems with dwell time is presented. A time varying Lyapunov function and 

a parameter dependent Lyapunov function have been used to design a switched state feedback 

controller with 2H  bound guarantees. These approaches have been applied to illustrative 

examples. 

In our future research, we intend to apply the proposed controller design strategies to 

more complex systems. 
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