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Abstract 

Artificial Bee Colony (ABC) algorithm inspired by the foraging behaviors of 

real honey bees is one of the most important swarm intelligence based optimization 

algorithms. When considering the robust and phase divided structure of the ABC 

algorithm, it is clearly seen that ABC algorithm is intrinsically suitable for 

parallelization. In this paper, we proposed a new emigrant creation strategy for parallel 

ABC algorithm. The proposed model named order based emigrant creation strategy 

depends on sending best food source in a subcolony after modifying it with another 

food source chosen sequentially from the same subcolony at each migration time. 

Experimental studies on a set of numerical benchmark functions showed that parallel 

ABC algorithm powered by the newly proposed model significantly improved quality of 

the final solutions and convergence performance when compared with standard serial 

ABC algorithm and parallel ABC algorithm for which the best food sources in the 

subcolonies directly used as emigrants. 

Keywords: swarm intelligence, Artificial Bee Colony algorithm, parallelization, mobile 

platform. 
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1.  Introduction 

In recent years,  modeling complex biological behaviors of species living 

together has become a major technique for solving optimization problems and many 

nature-inspired algorithms have been proposed including Ant Colony Optimization 

(ACO), Particle Swarm Optimization (PSO) and Bacterial Foraging Optimization 

(BFO), Artificial Bee Colony (ABC) and so on [1] – [4]. Although all of these 

population based optimization algorithms successfully applied fundamental mechanisms 

that are leading to emerge swarm intelligence, ABC algorithm is in a special position 

due to its phase divided structure, easy implementation and also requiring less control 

parameters [1] – [4].  

By considering the advantages of ABC algorithm, researchers used it for solving 

different types of problems ranging from aligning three or more biological sequences 

[5], [6] and guessing their three-dimensional structures [7] to training deep neural 

networks [8], image segmentation [9] to designing filters [10].  Although original ABC 

algorithm produced sufficiently good results in most cases, some studies have been 

made to further increase the quality of the final solutions and change the convergence 

characteristics of the algorithm. Zhu and Kwong proposed the gbest-guided ABC 

algorithm in which the parameters of the best food source are used instead of the 

parameters of the randomly determined food source [11]. Coelho and Alotto changed 

the candidate generation equation of the ABC algorithm by utilizing the coefficients 

extracted from the Gaussian distribution [12]. Karaboga and Gorkemli changed the 

search characteristics of the onlooker bees and proposed a new ABC algorithm variant 

called quick-ABC algorithm [13]. Gao and Liu used mutation operation of Differential 

Evolution (DE) algorithm and proposed a new ABC algorithm [14]. Xiang et al. 

combined ABC algorithm and DE and solved numerical optimization problems 

successfully [15]. Wu et al. propose HHSABC algorithm that is based on the 

combination of Harmony Search (HS) and ABC algorithms [16]. Banitalebi et al. 

proposed an improved ABC algorithm by combining it with the Estimation of 

Distribution (ED) algorithm [17].   

Other important studies about the ABC algorithm were made on the 

parallelization of it for distributed and shared memory based architectures. Narasimhan 
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parallelized ABC algorithm by dividing the whole bee colony into subcolonies and then 

assigning them to the different compute units [18]. In order to maintain population 

diversity, copies of each subcolony is also stored in the global memory [18]. 

Banharnsakun et al. parallelized ABC algorithm for distributed memory based 

architectures [19]. After completion of predetermined number of cycles, local best food 

sources of the two randomly determined subcolonies are exchanged [19]. Luo et al. 

introduced a new emigrant exchange schema called ripple-communication and applied it 

to the parallel ABC algorithm [20]. Experimental studies showed that ripple-

communication schema increased the accuracy of the ABC algorithm [20]. Subotic et al. 

utilized multiple bee colonies in their parallel implementation of ABC algorithm [21], 

[22]. Each colony is in communication by shared local best food sources among them 

[21], [22]. The effect of the migration period, migration topology and number of 

subcolonies on the parallel implementation of the ABC algorithm was investigated 

detailly by Basturk and Akay [23]. They first tested parallel ABC algorithm for solving 

high-dimensional numeric optimization problems and thenu training neural networks for 

classification problems [23]. Karaboga and Aslan focused on the emigrant selection and 

creation approaches for the parallel ABC algorithm [24]. They first proposed a new 

emigrant creation approach in which the local best food source is modified before it is 

sent to the neighbor subcolony. Secondly, they used all local best food sources to 

generate a global emigrant and the sent it to all subcolonies [25]. 

Utilizing local best food sources as an emigrant is common part for most of the 

parallel implementations of the ABC algorithm. However, if the local best food sources 

can not be improved between two consecutive migration periods, it is possible to see the 

same solution more than once in the same subcolony. If the subpopulation diversity that 

has already been decreased by dividing the whole colony is also deteriorated because of 

the same food sources coming from the neighbor subcolonies, parallelization of the 

ABC algorithm does not go beyond a study only aiming at acceleration with the power 

of the compute units. In order to overcome these mentioned issues, we proposed a new 

technique called order based emigrant creation strategy. In order based emigrant 

creation strategy, the local best food source found at the current migration time of a 

subcolony is powered with the more useful parameters of another food source. 

However, the selection of the auxiliary food source for the local best is managed in a 
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sequential manner for decreasing the possibility of sending the same emigrant. The rest 

of the paper is organized as follows: In the second section, fundamental steps of the 

ABC algorithm are introduced. Order based emigrant creation strategy and its working 

schema is summarized in the third section. Experimental studies and conclusion are 

given in the fourth and fifth sections, respectively. 

 

2. Artificial Bee Colony Algorithm 

ABC algorithm proposed by Karaboga at 2005 is inspired by the intelligent 

foraging behaviors as real honey bees. In ABC algorithm the whole colony is divided 

into three groups by considering special foraging characteristics of the bees [26]. The 

first group of bees is composed of the employed bees. Employed bees are responsible 

for finding food sources and carry nectar extracted from the sources. When employed 

bees come back to the hive, they share information about the nectar quality of the 

sources, distance to the hive and so on, with the second group of bees. The second 

group of bees consists of onlooker bees. Onlooker bees wait on the hive and select a 

food source to exploit it after checking the information supplied by the employed bees. 

The food source selection of the onlooker bees is not a randomized procedure directly. 

Selection probability of a food source has a relationship with its quality and if the nectar 

quality of a food source is high, its preference by onlookers is also high when compared 

other sources [26]. After an onlooker bee selects a food source, she continues the source 

exploration and exploitation processes as done by the employed bees. The final group of 

bees in the ABC algorithm consists of scout bees. Scout bees like onlooker bees wait on 

the hive, but food source selection behavior of them is managed by an internal 

motivation that leads to send scouts to unvisited food sources randomly [26]. The bee 

phases determined by the employed, onlooker and scout bees and their cyclical 

relationships continue until the end of a predetermined number of iterations-cycles is 

completed are given in the Algorithm 1. 

2.1    Generating Initial Food Sources 

In ABC algorithm, each food source corresponds possible solutions of the 

optimization problem being solved and nectar amounts of the sources are related with 

the fitness values of them. ABC algorithm generates these food sources randomly 
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before employed bees are assigned to them. The jth parameter of the ith food source or 

solution within SN different solutions is determined randomly between lower bound of 

the parameter showed by xj
min and upper bound of the parameter showed by xj

max using 

the Eq. 1 [26]. 

                           min max min(0,1)( )ij j j jX x rand x x        j = 1,2, … D                              (1) 
 

In Eq. 1, D corresponds to the number of parameters being optimized and 

rand(0,1) is used to define a random number of varies between 0 and 1. 

 
Algorithm 1 Fundamental steps of the ABC algorithm 
1: Initialization: 
2:   Assign values to the control parameters. 
3:   Generate SN initial food sources with D parameters. 
4: Repeat 
5:   //Employed bee phase 
6:   for i ← 1…SN do 
7:   Generate new solution around the memorized one. 
8:   Apply greedy selection between new and memorized sources. 
9:   end for 
10:  //Onlooker bee phase 
11:  sentBees ←  0, currentSource  ← 1 
12:  Find probability values of each food source. 
13:  while sentBees ≠ SN do 
14:   if pcurrentSource >  rand(0, 1) then 
15:   sentBees  ← sentBees + 1: 
16:   Generate new solution around the selected one. 
17:   Apply greedy selection between new and memorized sources. 
18:   end if 
19:   currentSource = (currentSource + 1) mod SN: 
20:  end while 
21:  //Scout bee phase 
22:  Determine the abandoned food source. 
23:  Generate a new source for this abandoned food source. 
24: Until Termination criteria is met 

2.2 Sending Employed and Onlooker Bees 

After generating initial population of SN different food sources, each food 

source is associated with only one employed bee by the ABC algorithm. The 

mathematical model used by the employed bees to generate a candidate food source 

around the memorized one is given in the Eq. (2) [26].  

                                                  ( )ij ij ij ij kjv x x x                                                        (2) 
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In the Eq. (2), vij is the parameter value of the candidate vi food source whose 

parameters are same with the parameters of the xi food source except the jth  parameter 

[26]. xij and xkj are the parameter values of the jth parameter of the xi and xk food 

sources, respectively and Ɵij corresponds to a random number between -1 and 1 [26]. If 

the fit(vi) fitness value of the vi food source calculated as in the Eq. (3) for a 

minimization problem is bigger than the fit(xi) fitness value of the xi food source, the 

employed bee applies a greedy selection procedure between xi and vi food sources and 

trial counter for xi food source is set to zero. Otherwise, the trial counter for xi food 

source is incremented by one to show that it is not improved in the current cycle. 

1 ( ) ; ( ) 0
( )

1/ (1 ( )); ( ) 0
i i

i

i i

obj x if obj x
fit x

obj x if obj x

      
   

                               (3) 

 
When the employed bee phase is completed, the food sources memorized by the 

employed bees are introduced to onlooker bees. As mentioned before selection of a food 

source is not a randomized operation exactly and it is directed by the qualities of the 

food sources [26]. In ABC algorithm, to direct the source selection procedure of the 

onlooker bees, each food source is identified by a selection probability. Selection 

probability of the xi food source that increases with the appropriate fitness values of it is 

calculated as in the Eq. (4). When the selection procedure is completed, the onlooker 

bees associated with these sources become employed bees and generate candidate food 

sources by utilizing the Eq. (2) [26]. 

                                                    
( )

( )
( )

i
i SN

j
j

fit x
p x

fit x



                                                       (4) 

2.3 Abandoning Consumed Food Sources 

In ABC algorithm, it is easily seen that the exploitation characteristics of the 

employed and onlooker bee phases are more dominant than the exploration 

characteristics of them [26]. However, for a proper search process, exploration and 

exploitation operations should be balanced. This subtle balance between exploration and 

exploitation is maintained by the scout bee phase. In scout bee phase, a food source is 

abandoned if required and a scout bee for abandoned food source is sent from hive to 

find a food source that has been discovered yet. The decision about which food source 

will be abandoned is made by comparing trial counters of them with ABC algorithm 
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specific control parameters called limit [26]. The food source for which its trial counter 

exceeds the limit parameters value at most is abandoned and a new food source created 

by the Eq. (2) is replaced with the consumed one. The value of the limit parameter for a 

numerical optimization problem is determined by the Eq. (5) given below [26]. 

                                                a SN D aand      �                                                  (5) 

 
 
 

3. Order Based Emigrant Creation Strategy 
 

If the parallelization approach of the ABC algorithm depends on dividing the 

whole colony into subcolonies and then assigning them to the different compute nodes 

or processor cores, it is clearly seen that the best food source found at the current 

migration time are chosen for sending to the neighbor subcolony or subcolonies in the 

vast majority of the studies. Determining a food source as an emigrant is not a single 

decision that should be made when parallelization of a population algorithm to decrease 

the execution time without deteriorating the quality of the final solutions and 

convergence characteristics. After deciding which sources are chosen as emigrants, they 

should send to the neighbor subcolonies in order to maintain the diversity and increase 

the quality of the existing solutions. The neighborhood relationship between 

subcolonies is directly determined by applying one of the commonly used migration 

topologies given below in the Fig. (1). 
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Figure 1: Ring (a), Ring 1+1 (b), Tourus (c) and Lattice (d) topologies 

 
Although all of these topologies have some advantages, their implementations 

require certain number of compute nodes or processor cores and migration period or 

interval should be carefully chosen to decrease the total execution time on the 

acceptable rates. When the neighborhood topology is chosen by considering system 

resources and the appropriate subcolony size is determined, the required population 

diversity is maintained by most of the topologies at the limited rates. By considering 

these situations, it can be said that type of information being exchanged between 

subcolonies becomes more important in parallelized implementations. 

Choosing the best food source in a subcolony and then sending them to the 

neighbor subcolony and then replacing it with the worst food source in the neighbor 

subcolony might be observed the most appropriate emigrant selection-creation strategy. 

However, mentioned emigrant strategy has some possible disadvantages. One of the 

main drawbacks stemmed from utilizing the best food sources as emigrants is related 

with the solution diversity. If the best food source used as an emigrant for the previous 

migration time cannot be improved until the next migration time, the same solution is 

sent more than once to the neighbor subcolony. Another drawback about the distribution 

(a) (b)

(c) (d)
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of the best food sources is that whether the food sources are enough to reflect the 

properties of the other solutions. The best food source determined as emigrant does not 

always guarantee that all of its parameters can be useful for generating candidate 

solutions. 

In the proposed model, each food source is utilized in the emigrant creation 

procedure sequentially by considering their orders or indexes. Sending food sources 

sequentially can be thought appropriate because of the ability of distributing diverse 

information. However, if the emigrant selection-creation procedure is managed without 

considering fitness values of the emigrants or the subcolony where emigrants are sent 

contains food sources whose fitness values are better than the emigrants, the 

computational and communication burden are not worth sending and receiving 

emigrants. In other words, it can be said that the food source determined to be sent to 

the neighbor subcolony should be enough in terms of quality and increase the 

population diversity. By considering all of these limitations originated from the 

conventional emigrant creation-selection schemas, we proposed a new emigrant 

creation-selection strategy in which the best food source found at the current migration 

period is modified with the more suitable parameters of a food source that is changed 

sequentially in the same population for each migration period. The pseudo code given in 

the Algorithm 2 summarized the newly proposed strategy called order based emigrant 

creation. 

When the pseudo code given in the Algorithm 2 is investigated, it is clearly seen 

that the jth parameter of the best food source xb is updated by the corresponding 

parameter of the xord food source. xord food source is determined by applying modulo 

operation between currentMigIndex and sizeOfSubcolony that increment ord index one 

by one for each migration period. Although xb food source is not improved between two 

subsequent migration time, p and p+1, order based emigrant strategy guarantees that it 

is sent to the neighbor subcolony after modification with xord and x(ord+1) food sources, 

respectively. 

 
 
 
 
 

Algorithm 2 Order based emigrant creation strategy 
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1: sizeOfSubcolony ← number of food resources in the subcolony. 
2: migPeriod ← the counter shows many times migration occurred. 
3: b ← index of best food source in the subcolony. 
4: ord ← (migPeriod)mod(sizeOfSubColony) 
5: if b == ord then 
6:   ord ← (ord+1)mod(sizeOfSubcolony). 
7: end if 
8: xb ← food source with the index b. 
9: xord ← food source with the index ord. 
10: for j ← 1…D do 
11:  temp ← xb,j 

12:  xb,j = xord,j  
13:  fitemigrant ← calcFit(xb). 
14:  if fitemigrant < fit(xb) then 
15:   xb,j ← temp. 
16:  else 
17:  fit(xb) ← fitemigrant 

18:  end if 
19: end for 
 

 

 
4. Experimental Studies 

Standard serial implementation of the ABC algorithm, s-ABC, its parallel 

implementation, p-ABC in which the best food source in a subcolony is chosen as an 

emigrant and it is changed with the worst food source in the neighbor subcolony and 

finally the parallel implementation with order based emigrant creation strategy, ord-p-

ABC in which the best food source prepared by the mentioned strategy for migration is 

chosen as an emigrant and it is changed with the worst food source in the neighbor 

subcolony are tested using three different numerical benchmark functions given in the 

Table I below. The first function, f1 is the Sphere function. This function has a single 

global minimum located at the [0, 0,…,0] point in the search space and lower and upper 

bounds of the parameters are set to -100 and 100, respectively. The second function, f2 

is Griewank function and has many local minimums that are regularly distributed on the 

search space. The global minimum of the Griewank function is located at the [0, 0,…,0] 

point and the values that can be assigned to the parameters are limited between -600 and 

600. The last function,  f3 , is Rosenbrock function. Because of the difficulty for finding 

global optimum that is located at the end of a long and narrow valley, this function is 
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frequently used to check the convergence performance of the optimization algorithms. 

The global minimum of the Rosenbrock function is located at the [1, 1,…,1] point in the 

search space and lower and upper bounds of the parameters are set to -100 and 100, 

respectively. 

 
TABLE I: Benchmark functions used in comparison 

 
Function Formulation 

f1  2
1

1

( )
D

i
i

f x x



 

f2 
2

2
1 1

1
( ) , 1

4000

DD
i

i
i i

x
f x x cos

i 

    
      

    
   

f3    
1 2 22

3 1
1

( ) 100( 1 )
D

i i i
i

f x x x x





     

 
When solving the optimization problems with s-ABC, p-ABC and ord-p-ABC 

algorithms, number of food sources was taken equal to 100 and number of parameters 

was set to 500. The maximum cycle number was set to 2000 and limit parameter value 

was taken equal to the number of parameters. For p-ABC and ord-p-ABC algorithms, 

ring neighborhood topology was used and the whole colony was divided into four equal 

subcolonies and finally migration frequency was taken one percent of the maximum 

cycle number. All the experiments were performed on an Android® 5.1.1 operating 

system working on a mobile platform that is equipped with an ARM® based processor 

running 1.3 GHz with 1GB of RAM. s-ABC, p-ABC and ord-p-ABC algorithms were 

written in C programming language and parallelization and required synchronization 

between subcolonies were maintained by utilizing the built-in functions of the pthreads 

library. Each of the function was tested 20 different times with random seeds. Average 

best objective function values and standard deviations calculated over 20 different runs 

were recorded and given in the Tables II – IV. 

When the results given in the Tables II, III and IV are investigated, it is seen that 

ord-p-ABC algorithm produced better average best objective function values than s-

ABC and p-ABC algorithms for all of f1, f2, f3 functions. While the results obtained by 

the p-ABC algorithm lagged slightly behind the results obtained by the s-ABC 

algorithm especially for the f1 and f3 functions, ord-p-ABC algorithm overcame the 

main issue to do with the decreased population diversity of the subcolonies that leads to 
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deteriorate the performance of the p-ABC algorithm and produced at least 105 times 

better results for the function f1, 104 times better results for the function f2 and 106 times 

better results for the function f3 that the s-ABC and p-ABC algorithms. 

 
TABLE II: Comparison of s-ABC and p-ABC algorithms 

Func. 
s-ABC p-ABC 

Mean Std. Dev. Mean Std. Dev. 
f1 6.548575e+04 1.171718e+04 1.035821e+05 1.469255e+04 
f2 6.524802e+02 8.983277e+01 9.449440e+02 1.022350e+02 
f3 2.557243e+09 3.227430e+09 2.356143e+10 5.546746e+09 

 
 

TABLE III: Comparison of s-ABC and ord-p-ABC algorithms 

Func. 
s-ABC ord-p-ABC 

Mean Std. Dev. Mean Std. Dev. 
f1 6.548575e+04 1.171718e+04 4.640619e-01 5.420124e-01 
f2 6.524802e+02 8.983277e+01 9.077554e-02 6.457029e-02 
f3 2.557243e+09 3.227430e+09 3.291103e+03 3.390808e+03 

 
TABLE IV: Comparison of p-ABC and ord-p-ABC algorithms 

Func. 
p-ABC ord-p-ABC 

Mean Std. Dev. Mean Std. Dev. 
f1 1.035821e+05 1.469255e+04 4.640619e-01 5.420124e-01 
f2 9.449440e+02 1.022350e+02 9.077554e-02 6.457029e-02 
f3 2.356143e+10 5.546746e+09 3.291103e+03 3.390808e+03 

 
Another comparison between serial and parallel implementations of the ABC 

algorithms was made by considering average execution times obtained from the 20 

different runs in terms of second, speedup and efficiency values. The speedup is a ratio 

between serial and parallel execution times of the algorithms and it's maximum value 

can be equal to number of computing nodes or cores. Efficiency is another measure that 

can be found by divining speedup measure to the number of computing nodes or cores. 

The maximum value of the efficiency measure can be equal to 1. When the results given 

in the Table V and VI are analyzed, it is understood that order based emigrant creation 

strategy brings extra burden to the total execution time of the algorithm compared with 

the p-ABC algorithm. Because of the execution time needed to employ order based 

emigrant creation strategy, the average execution time of the ord-p-ABC algorithm is 

9.194% higher than the average running time of the p-ABC algorithm for function f1, 

9.743% higher than the average running time of the p-ABC algorithm for function f2 
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and finally 34.242% higher than the average running time of the p-ABC algorithm for 

function f3. There is another point should be noted that when the computational 

complexities of the benchmark problems increase, the difference between execution 

times between p-ABC and ord-p-ABC algorithms decrease. The relationship between 

complexity of the functions and execution time of the parallel ABC algorithm showed 

that compute intensive problems are more suitable for order based emigrant creation 

strategy. 

 
TABLE V: Speedup and efficiency values of p-ABC 

Func. s-ABC 
(exec. time) 

p-ABC 
(exec. 
time) 

Speedup Efficiency 

f1 2.995314 1.774507 1.687969 0.421992 
f2 33.764449 10.905223 3.096172 0.774043 
f3 6.527048 2.033796 3.209293 0.802323 

 
 

TABLE VI: Speedup and efficiency values of ord-p-ABC 
Func. s-ABC 

(exec. time) 
ord-p-
ABC 
(exec. 
time) 

Speedup Efficiency 

f1 2.995314 1.937657 1.545844 0.386461 
f2 33.764449 11.967766 2.821283 0.705321 
f3 6.527048 2.730220 2.390668 0.597667 
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Figure 2: Convergence graphics of the ABC algorithms for f1 (a), f2 (b) and f3 (c) 

functions 
 

In order to analyze the effect of order based emigrant creation strategy on the 

convergence performance of the parallelized ABC algorithm, the graphics given in the 

Fig. (2) should be examined. As seen from the graphics, it is clear that the convergence 

performance of the ord-p-ABC algorithm is remarkably better than those of s-ABC and 

p-ABC algorithms. While p-ABC algorithm converges a bit faster that the s-ABC 

algorithm within the first quarter of the total number of cycles, s-ABC algorithm 

provides a sustainable convergence to the global optimum within the remaining cycles 

for the f1, f2 and f3 functions. With the start of the distribution of the emigrant food 

sources, ord-p-ABC algorithm quickly diverges from the convergence curves of the s-
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ABC and p-ABC algorithms and maintains its superior performance until the end of the 

cycles. 

 

5. Conclusion 

In this study, we proposed a new emigrant creation strategy in which the best 

food source found in the current migration period is modified by the more appropriate 

parameters of another food source determined sequentially. Newly proposed approach 

that is also called order based emigration creation strategy is used with the parallel 

implementation of the ABC algorithm. Experimental studies showed that order based 

emigrant creation strategy is significantly improved the quality of the finals solutions 

and convergence performance of the parallel ABC algorithm compared with the 

conventional serial and parallel implementation of the algorithm. 
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