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Abstract   

Design of structures that are inspired by the Nature is gaining attention in the latest 

year and many studies on the lattices of the materials are being conducted. And for 

designing, beams and truss structures are widely used elements. Thus, when designing new 

structures, getting inspired by those lattices and making use of those beams and trusses 

might prove to be advantageous. Maintaining the estimated lifetime of the structures is also 

an essential factor. So, it is essential to determine the characteristics of the structures such 

as the deflection, stresses and more. When determining those structures, finite element 

analysis can be used effectively. In this study, the lattice inspired models were constructed. 

Inverted L-frames, inverted U-frames and 3D frames were designed by using those models. 

Then to analyze those structures, finite elements method was used. The frames were 

subjected to four different input forces which were generated by using their total weight 

multiplied by 10, 20, 50, 100 coefficients. The results demonstrated that these designed 

structures can be used in many areas such as aviation, space, construction. Also, those 

structures can be used as the core part of the sandwich composites. 

Keywords: Lattice of metals, finite element method, dynamic analysis, inspired 

design 
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METALLERİN KAFES YAPILARINDAN ESİNLENMİŞ YAPILARIN DİNAMİK 

ANALİZİ 

 
 
Özet 

Son yıllarda doğadan esinlenerek oluşturulan yapıların tasarımı dikkat çekmekte ve 

malzemelerin kafes yapılarıyla ilgili birçok çalışma yapılmaktadır. Yine bu tasarımlarda 

kirişler ve kafes sistemler yaygın olarak kullanılan elementlerdir. Bu sebeplerden, yeni 

yapılar tasarlarken materyallerin kafes yapılarından esinlenmek ve yapı elemanları olarak 

kiriş ve kafes sistemleri oluşturmak mantıklı olabilmektedir. Yapıların beklenen yaşam 

sürelerini koruyabilmek de önem verilmesi gereken bir durumdur. Bu sebepten yapılarda 

meydana gelen deformasyonları, gerilmeleri ve diğer benzeri karakteristik özellikleri tespit 

etmek bir gerekliliktir ve sonlu elemanlar yöntemi bu özelliklerin analizinde başarılı bir 

şekilde kullanılmaktadır. Bu çalışmada malzemelerin kafes yapılarından esinlenilerek 

yapılar modellenmiştir. Bu modeller kullanılarak Tersine L tipi iskelet yapılar, tersine U 

tipi iskelet yapılar ve 3B iskelet yapılar oluşturulmuştur. Bu iskelet yapılar, kendi 

ağırlıklarının 10, 20, 50 ve 100 katsayıları ile çarpılarak elde edilen dört farklı etki 

kuvvetine maruz bırakılmışlardır. Sonuçlardan bu tür yapıların havacılık, uzay, inşaat gibi 

birçok alanla kullanılabileceğine kanaat getirilmiştir. Ayrıca bu tür yapıların sandviç 

kompozit yapıların çekirdek kısmında da kullanılabilmesi mümkün görülmektedir.  

Anahtar kelimeler: Kafes yapılar, sonlu elemanlar yöntemi, dinamik analiz, 

esinlenmiş tasarım 

 
 
1. INTRODUCTION 

With constant advancements in technology, new ways are being tested on designing 

new structures. Thanks to the intriguing engineering systems in nature that researchers have 

encountered while working on their studies, new structures that are inspired by nature are 

being designed in the recent years. Lattice-inspired and bio-inspired structures are getting 
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popular nowadays and are likely to be applicable in many areas such as construction, 

aviation, marine, space, and more. 

Many studies related to lattices are being carried out. Usage and manufacturing of 

lattice structures have grown thanks to their lightweight and mechanical efficiency ratio. 

Lattices that are produced using additive manufacturing are composed of beams [1,2]. In 

their work, Yan et al. investigated the manufacturability and performance of advanced and 

lightweight stainless steel cellular lattice structures fabricated via selective laser melting 

[3]. Mahshid et al. investigated the effect of cellular lattice structures on the strength of 

workpieces additively manufactured. Authors conducted studies both numerically and 

experimentally. Numerical studies were performed using DEFORM-3D simulation system 

based on the finite element method [4]. Lee and McClure developed a numerical model for 

simulating behaviour of lattice steel tower structures. They presented static large 

deformation analysis of a lattice steel tower structure using finite element analysis and 

compared the numerical results with full-scale test. 2-node three-dimensional beam 

elements proposed in their previous work was used in the static finite element analysis [5]. 

Guo et al. proposed 3D periodic multilayer lattice materials such as the square, the 

quadrate, the tetrahedron and the hexagon in order to supply load-carrying necessities of a 

composite material. Authors obtained static structural simulation results using BEAM189 

element in ANSYS, the static mechanical properties of the four multilayer lattice materials 

were analysed [6]. Sun et al. designed a regular hexahedral unit, produced the lattice 

structure composed of the Ti–6Al–4V units. After that, they obtained the experimental 

fracture load and the compression deformation of them through compression tests, then 

conducted a simulation of the unit and the lattice structure through ANSYS (static) to 

analyse the failure point [7]. Stankovic et al. developed a generalized optimality criteria 

method for the optimization of discrete, multimaterial, additively manufactured mesoscale 

lattice structures for maximum performance in a constrained volume. The generalized 

optimality criteria method for multimaterial optimization of discrete lattice structure 

designs was implemented in MATLAB with a linear elastic finite element method (FEM) 

module for design response analysis [8]. Messner et al. presented a dynamic equivalent 
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continuum model for periodic truss structures suitable for representing long-wavelength 

wave propagation and verifies it against the full Bloch wave theory and detailed finite 

element simulations. The FE simulations were run with ALE3D, an arbitrary Lagrangian–

Eulerian finite element code developed at Lawrence Livermore National Laboratory [9]. 

Messner developed a method for optimizing the mesostructure of lattice-structured 

materials. These materials are periodic arrays of slender members resembling efficient, 

lightweight macroscale structures like bridges and frame buildings [10]. Syam et al. 

examined the use of additively manufactured strut-based lattice structures to improve the 

mechanical vibration isolation properties of a structure. Finite element modelling had been 

used to determine the theoretical static and dynamic mechanical properties of both the 

single cell and the array configuration of the lattice structures [11]. 

Beams and truss structures are common elements in constructing buildings, frame, 

etc. They are frequently used in the engineering systems [12,13,14,15]. And for analyzing 

engineering systems, the Finite Element Method (FEM) is a widely used method 

[15,16,17,18,19,20]. In this method, structures are meshed out and mathematical models 

which involve differential equations [21] that have huge degrees of freedom are calculated. 

In the past, equation solving was a difficult task but now that computers are capable enough 

to process high amount of data in short time, finite element method can be used as the 

primary solving method [15]. 

In this study the structures that are inspired by the lattices of materials were designed 

and analyzed dynamically. For these kinds of structures, suitable designs are important to 

retain their estimated working life. Hence, it is a must to determine the characteristics of 

those structures i.e. the deflections, stresses and more. And, the finite element is a capable 

method to determine those characteristics [15]. So, ANSYS finite element software which 

featured beam finite elements that are based on the Timoshenko beam theory was used to 

analyze the structures. 
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2. FINITE ELEMENT MODELING 

There are many materials on the world and four of them were considered. Their 

lattice structures were inspired by to design the cell models. Those materials are Cu, TiO2, 

FeS, ZnSe and their lattice structures are given in Figure 1. 

 

Figure 1. Lattices of the materials: (a) Cu [22], (b) TiO2 [23], (c) FeS [24], (d) ZnSe [25] 

SolidWORKS was used to design the lattice inspired cells and a lattice database was 

created in IGES format. A labeling style in which the models were named as Li where L is 

abbreviation of lattices and i represents the number of the lattices that stored in the 

database. Those cell models (line models) are given in Figure 2 and their dimensions are 

given in Figure 3 

 

Figure 2. Line models of lattices: (a)Cu, (b) TiO2, (c) FeS, (d) ZnSe 
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Figure 3. Dimensions of lattices and section 

ANSYS is a world-known finite element solving software and thus was preferred in 

this study. The IGES files that held the cell models were imported into ANSYS. Finite 

element models of inverted-L, inverted-U frames and 3D frames were constructed by using 

the cell models. As an example, the inverted L-frames that are composed of L1, L2, L3 and 

L4 are given in Figure 4. 

 

Figure 4. L-frames: (a) L1 (b) L2 (c) L3 (d) L4 

 The finite element models of frames were generated by using only one of the lattice 

models every time and in whole 12 frames were generated. For the inverted L frames, three 

models in the direction of the y-axis and two models in the direction of x-axis were used. 

For the inverted L frames, 4 cell models in the direction of the y-axis and 3 cell models in 

the direction of x-axis were used. For the inverted U frames, 5 cell models in the direction 

of the y-axis for the both of the columns were used and 3 cell models were placed in the 

direction of x-axis to connect them. And in order construct 3D frames, 8 cell models in the 

direction of the y-axis were used for the columns and 5 and 6 cell models in both of the z-

axis and x-axis, respectively, to connect those columns together. 

b (μm)  1250 

h (μm)  2500 

t  (μm)  1000 

s  (μm)  50 
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BEAM44 elements were used in ANSYS models. BEAM44 is a uniaxial element 

with tension, compression, torsion, and bending capabilities [26]. 

The material properties of lattices were defined by pm = [E, ρ, υ, β] where E is 

modulus of elasticity (GPa), ρ is density (kg/m3), υ is Poisson’s ratio and β is material 

damping ratio. pm = [113.8, 4430, 0.342, 0.0001] for TI-6AI-4V material and designing 

was constructed as linear elastic isotropic model in this study. 

With the intention of accomplishing the finite element models of these frame 

structures successfully, the modeling macro files were created as a first step. Then, the 

solution macro files which are for generating the natural frequencies of the frame structures 

were created. In the model macro files, lines were allocated for beams. Afterwards, material 

properties and section were defined for the beams. Cell dimensions were 1250x2500x1000 

µm and assigned section dimensions were 50x50 µm as shown in Figure3. Thus, all lines 

were meshed out by in according to these sections and material properties. The structures 

were fixed at points which can be seen over in Figure 5. Lastly, transient dynamic analyses 

were performed and pulse (impact), step and trapezoidal responses of these frame 

structures were obtained by using the solution macro files.  

 

 
3. DYNAMIC ANALYSIS RESULTS 

In these analyses, forces were implemented as inputs that are pulse (impact), step and 

trapezoid forces (see Figure 5) in the direction of z-axis on the “E” point that can be 

observed in the Figure 6 and from this point the deflection outputs were obtained in the 

direction of z-axis as well. 
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Figure 5. Implemented forces: (a) Pulse (b) Step (c) Trapezoidal 

Each frame was subjected to four kinds of input forces which were generated by 

multiplying their total weight with kf= [10, 20, 50,100] coefficients, respectively. Total 

weights of the frames are given in the format of Wi where W means weight and i represents 

the number of the frames. The magnitude of forces (Fi) was calculated by using Equation 1. 

         Fi=kfWi                                                           (1) 

t is time step of the simulation and ts is simulation time and was calculated by using 

Equation 2,  

t =1/(20fn)                                                       (2) 

where fn is natural frequency of the frames at direction of excitation.    

In the Figure 5c, ta, tm, and td are acceleration, motion and deceleration time of force 

inputs correspondingly. 

 

Figure 6. Positions of the E points on the frames 
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For the inverted L-frames, the E point was on the top-middle point on the face that 

positioned on the free end and oriented towards x-axis. For the inverted U-frames the E 

point was on the top-middle point on the face that positioned on the horizontal beam and 

oriented towards z-axis except for L1-U-frames where the E point in the volume center of 

the middle cell lattice model. For the inverted 3D-frames the E point was on the top-middle 

point on the face that positioned on the rear horizontal beam and oriented towards z-axis 

except for L1-3D-frames where the E point in the volume center of the middle cell lattice 

model. 

 

3.1. Results of Inverted L-Frames 

Their weights are given as Wi = [20.54, 20.40, 21,06, 21.13] μN. Pulse, step and 

trapezoidal responses of the frames are given in the figs. 

 

Figure 7. L1 pulse response 

It can be deduced from the Figure 7 that deflections are 56.06, 112.1, 280.3 and 560.6 

µm correspondingly to the applied forces. The maximum deflection of L1-frame was 

exhibited at the force that is exact 100 times of its weight.  



 
Selçuk-Teknik Dergisi ISSN 1302-6178 Journal of Selcuk-Technic 
Özel Sayı 2018 (ICENTE’17)    Special Issue 2018 (ICENTE'17) 
 

47 

 

Figure 8. L2 pulse response 

It can be inferred from the Figure 8 that deflections are 56.83, 113.7, 284.1 and 568.3 

µm correspondingly to the applied forces. The maximum deflection of L2-frame was 

exhibited at the force that is exact 100 times of its weight.  

 

Figure 9. L3 pulse response 

It can be shown from the Figure 9 that deflections are 44.7, 89.4, 223.5 and 447.0 µm 

correspondingly to the applied forces. The maximum deflection of L3-frame was exhibited 

at the force that is exact 100 times of its weight. 
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Figure 10. L4 pulse response 

It can be shown from the Figure 10 that deflections are 44.7, 89.4, 223.5 and 447.0 

µm correspondingly to the applied forces. The maximum deflection of L4-frame was 

exhibited at the force that is exact 100 times of its weight.  

 

Figure 11. L1 step response 

It can be seen from the Figure 11 that deflections are 365.3, 730.5, 1826.0 and 3653.0 

µm correspondingly to the applied forces. The maximum deflection of L1-frame was 

revealed at the force that is exact 100 times of its weight.  
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Figure 12. L2 step response 

It can be seen from the Figure 12 that deflections are 370.3, 740.6, 1852.0 and 3703.0 

µm correspondingly to the applied forces. The maximum deflection of L2-frame was shown 

at the force that is exact 100 times of its weight.  

 

Figure 13. L3 step response 

It can be observed from the Figure 13 that deflections are 291.9, 583.7, 1459.0 and 

2919.0 µm correspondingly to the applied forces. The maximum deflection of L3-frame 

was shown at the force that is exact 100 times of its weight.  
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Figure 14. L4 step response 

It can be observed from the Figure 14 that deflections are 217.9, 435.8, 1090.0 and 

2179.0 µm correspondingly to the applied forces. The maximum deflection of L4-frame 

was shown at the force that is exact 100 times of its weight. 

 

Figure 15. Comparison the step responses of lattices 

In the Figure 15, the step responses at the force that is exact 20 times of their weight. 

The zoomed view of maximum deflection of the structures is shown in Figure 16. 
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According to Figure 16, it is clear that the robust structure is L4-frame due to the fact that it 

has the minimum amplitude under the excited force. 

 

Figure 16. Zoomed vie of comparison the step responses of lattices 

The trapezoidal inputs were conducted as another excitation type for the structures. 

The responses were obtained by applying forces that are exact 20 times of their weight. As 

one can see in Figure 17, L4-frame was the most robust structure, and the results show same 

trend as the other responses as well. 
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Figure 17. Comparison the trapezoidal responses of lattices 

3.2. Results of Inverted U-Frames 

Their weights are given as Wi = [38.21, 37.53, 38.76, 38.90] μN. The pulse, step and 

trapezoidal inputs were conducted as excitation force type for the structures. Comparison of 

pulse, comparison of step and comparison of trapezoidal responses of the frames are given 

in the Figure 18, Figure 19 and Figure 20, respectively. 

 

Figure 18. Comparison the pulse responses of lattices 
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Figure 19. Comparison the step responses of lattices 

 

Figure 20. Comparison the trapezoidal responses of lattices 

The responses were attained by applying forces that are exact 20 times of their 

weight. As one can see in Figure 18, Figure 19 and Figure 20, L1-frame was the most 

robust structure and the results show same tendency as the other responses as well. 

 
 
3.3. Results of 3D-Frames 
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Their weights are given as Wi = [180.57, 175.89, 181.73, 182.41] μN. The pulse, step 

and trapezoidal inputs were performed as excitation force type for the structures. 

Comparison of pulse, comparison of step and comparison of trapezoidal responses of the 

frames are given in the Figure 21, Figure 22 and Figure 23, respectively. 

 

Figure 21. Comparison the pulse responses of lattices 

 

Figure 22. Comparison the step responses of lattices 
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Figure 23. Comparison the trapezoidal responses of lattices 

The responses were computed by applying forces that are exact 20 times of their 

weight. As seen in Figure 21, Figure 22 and Figure 23, L1-frame was the most robust 

structure and the results show same tendency as the other responses as well. 

 
 
4. CONCLUSION 

In this work, lattice inspired cell models were generated and by using those cell 

models, three different structures such as inverted L-frames, inverted U-frames and 3D-

frames were constructed in ANSYS software. The frames were subjected to four different 

input forces which were their total weight multiplied by 10, 20, 50 and 100 coefficients. 

The analysis results showed that the frames can withstand to the forces that can be much 

greater than their own weight. 

 Still, it is recommended to confirm the results with actual experimental data. As a 

future study, manufacturing of the designed structures and conducting experimental studies 

are planned. 
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